Fr. 134.00

A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

In three dimensional boundary element analysis, computation of integrals is an important aspect since it governs the accuracy of the analysis and also because it usually takes the major part of the CPU time. The integrals which determine the influence matrices, the internal field and its gradients contain (nearly) singular kernels of order lIr a (0:= 1,2,3,4,.··) where r is the distance between the source point and the integration point on the boundary element. For planar elements, analytical integration may be possible 1,2,6. However, it is becoming increasingly important in practical boundary element codes to use curved elements, such as the isoparametric elements, to model general curved surfaces. Since analytical integration is not possible for general isoparametric curved elements, one has to rely on numerical integration. When the distance d between the source point and the element over which the integration is performed is sufficiently large compared to the element size (d 1), the standard Gauss-Legendre quadrature formula 1,3 works efficiently. However, when the source is actually on the element (d=O), the kernel 1I~ becomes singular and the straight forward application of the Gauss-Legendre quadrature formula breaks down. These integrals will be called singular integrals. Singular integrals occur when calculating the diagonals of the influence matrices.

Sommario

I Theory and Algorithms.- 1 Introduction.- 2 Boundary Element Formulation of 3-d Potential Problems.- 3 Nature of Integrals in 3-d Potential Problems.- 4 Survey of Quadrature Methods for 3-d Boundary Element Method.- 5 The Projection and Angular & Radial Transformation (Part) Method.- 6 Elementary Error Analysis.- 7 Error Analysis using Complex Function Theory.- II Applications and Numerical Results.- 8 Numerical Experiment Procedures and Element Types.- 9 Applications to Weakly Singular Integrals.- 10 Applications to Nearly Singular Integrals.- 11 Applications to Hypersingular Integrals.- 12 Conclusions.- References.

Dettagli sul prodotto

Autori Ken Hayami
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.1992
 
EAN 9783540550006
ISBN 978-3-540-55000-6
Pagine 456
Peso 778 g
Illustrazioni X, 456 p.
Serie Lecture Notes in Engineering
Lecture Notes in Engineering
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.