Fr. 134.00

Association Rule Hiding for Data Mining

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique in data mining, which studies the problem of hiding sensitive association rules from within the data.
Association Rule Hiding for Data Mining addresses the problem of "hiding" sensitive association rules, and introduces a number of heuristic solutions. Exact solutions of increased time complexity that have been proposed recently are presented, as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a thorough discussion regarding closely related problems (inverse frequent item set mining, data reconstruction approaches, etc.). Unsolved problems, future directions and specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem.
Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.

Sommario

Part I Fundamental Concepts.- Introduction.- Background.- Classes of Association Rule Hiding Methodologies.- Other Knowledge Hiding Methodologies.- Part II Heuristic Approaches.- Distortion Schemes.- Blocking Schemes.- Part III Border Based Approaches.- Border Revision for Knowledge Hiding.- BBA Algorithm.- Max Min Algorithms.- Part IV Exact Hiding Approaches.- Menon s Algorithm.- Inline Algorithm.- Two Phase Iterative Algorithm.- Hybrid Algorithm.- Parallelization Framework for Exact Hiding.- Quantifying the Privacy of Exact Hiding Algorithms.- Part V Epilogue.- Conclusions.- Roadmap to Future Work.- References.- Index.

Riassunto

Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique in data mining, which studies the problem of hiding sensitive association rules from within the data.

Association Rule Hiding for Data Mining addresses the problem of "hiding" sensitive association rules, and introduces a number of heuristic solutions. Exact solutions of increased time complexity that have been proposed recently are presented, as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a thorough discussion regarding closely related problems (inverse frequent item set mining, data reconstruction approaches, etc.). Unsolved problems, future directions and specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem.

Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.