Fr. 134.00

Principles of Neural Model Identification, Selection and Adequacy - With Applications to Financial Econometrics

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Neural networks have had considerable success in a variety of disciplines including engineering, control, and financial modelling. However a major weakness is the lack of established procedures for testing mis-specified models and the statistical significance of the various parameters which have been estimated. This is particularly important in the majority of financial applications where the data generating processes are dominantly stochastic and only partially deterministic. Based on the latest, most significant developments in estimation theory, model selection and the theory of mis-specified models, this volume develops neural networks into an advanced financial econometrics tool for non-parametric modelling. It provides the theoretical framework required, and displays the efficient use of neural networks for modelling complex financial phenomena. Unlike most other books in this area, this one treats neural networks as statistical devices for non-linear, non-parametric regression analysis.

Sommario

1 Introduction.- 2 Neural Model Identification.- 3 Review of Current Practice in Neural Model Identification.- 4 Neural Model Selection: the Minimum Prediction Risk Principle.- 5 Variable Significance Testing: a Statistical Approach.- 6 Model Adequacy Testing.- 7 Neural Networks in Tactical Asset Allocation: a Case Study.- 8 Conclusions.- Appendices.- A Computation of Network Derivatives.- B Generating Random Normal Deviates.- References.

Riassunto

Neural networks have had considerable success in a variety of disciplines including engineering, control, and financial modelling.

Dettagli sul prodotto

Autori Apostolos-Paul Refenes, Apostolos-Paul N Refenes, Apostolos-Paul N. Refenes, A. D. Zapranis, Achillea Zapranis, Achilleas Zapranis
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.07.2013
 
EAN 9781852331399
ISBN 978-1-85233-139-9
Pagine 190
Dimensioni 154 mm x 234 mm x 12 mm
Peso 320 g
Illustrazioni IX, 190 p. 34 illus.
Serie Perspectives in Neural Computing
Perspectives in Neural Computing
Categorie Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica
Scienze sociali, diritto, economia > Economia > Tematiche generali, enciclopedie

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.