Fr. 70.00

Pairs of Compact Convex Sets - Fractional Arithmetic with Convex Sets

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]).

Sommario

I Convexity.- 1 Convex Sets and Sublinearity.- 2 Topological Vector Spaces.- 3 Compact Convex Sets.- II Minimal Pairs.- 4 Minimal Pairs of Convex Sets.- 5 The Cardinality of Minimal Pairs.- 6 Minimality under Constraints.- 7 Symmetries.- 8 Decompositions.- 9 Invariants.- 10 Applications.- III Semigroups.- 11 Fractions.- 12 Piecewise Linear Functions.- Open Questions.- List of Symbols.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.