Fr. 134.00

Structure from Motion using the Extended Kalman Filter

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The fully automated estimation of the 6 degrees of freedom camera motion and the imaged 3D scenario using as the only input the pictures taken by the camera has been a long term aim in the computer vision community. The associated line of research has been known as Structure from Motion (SfM). An intense research effort during the latest decades has produced spectacular advances; the topic has reached a consistent state of maturity and most of its aspects are well known nowadays. 3D vision has immediate applications in many and diverse fields like robotics, videogames and augmented reality; and technological transfer is starting to be a reality.
This book describes one of the first systems for sparse point-based 3D reconstruction and egomotion estimation from an image sequence; able to run in real-time at video frame rate and assuming quite weak prior knowledge about camera calibration, motion or scene. Its chapters unify the current perspectives of the robotics and computer vision communities on the 3D vision topic: As usual in robotics sensing, the explicit estimation and propagation of the uncertainty hold a central role in the sequential video processing and is shown to boost the efficiency and performance of the 3D estimation. On the other hand, some of the most relevant topics discussed in SfM by the computer vision scientists are addressed under this probabilistic filtering scheme; namely projective models, spurious rejection, model selection and self-calibration.

Sommario

Introduction.- Points at Infinity. Mosaics using the Extended Kalman Filter.- Inverse Depth Parametrization.- 1-Point RANSAC.- Degenerate Camera Motions and Model Selection.- Self-calibration.- Conclusions.

Riassunto

The fully automated estimation of the 6 degrees of freedom camera motion and the imaged 3D scenario using as the only input the pictures taken by the camera has been a long term aim in the computer vision community. The associated line of research has been known as Structure from Motion (SfM). An intense research effort during the latest decades has produced spectacular advances; the topic has reached a consistent state of maturity and most of its aspects are well known nowadays. 3D vision has immediate applications in many and diverse fields like robotics, videogames and augmented reality; and technological transfer is starting to be a reality.
This book describes one of the first systems for sparse point-based 3D reconstruction and egomotion estimation from an image sequence; able to run in real-time at video frame rate and assuming quite weak prior knowledge about camera calibration, motion or scene. Its chapters unify the current perspectives of the robotics and computer vision communities on the 3D vision topic: As usual in robotics sensing, the explicit estimation and propagation of the uncertainty hold a central role in the sequential video processing and is shown to boost the efficiency and performance of the 3D estimation. On the other hand, some of the most relevant topics discussed in SfM by the computer vision scientists are addressed under this probabilistic filtering scheme; namely projective models, spurious rejection, model selection and self-calibration.

Testo aggiuntivo

From the reviews:
“This collection of methods and techniques concerns the so-called structure from motion (SfM) problem … . this book addresses the SfM problem as an unsupervised 3D sparse points reconstruction, in particular using the extended Kalman filter. … a good read for researchers and PhD students in computer vision and robotics areas, because it provides an interesting point of view on how to attack and solve the SfM problem.” (Marco Fratarcangeli, ACM Computing Reviews, March, 2013)

Relazione

From the reviews:
"This collection of methods and techniques concerns the so-called structure from motion (SfM) problem ... . this book addresses the SfM problem as an unsupervised 3D sparse points reconstruction, in particular using the extended Kalman filter. ... a good read for researchers and PhD students in computer vision and robotics areas, because it provides an interesting point of view on how to attack and solve the SfM problem." (Marco Fratarcangeli, ACM Computing Reviews, March, 2013)

Dettagli sul prodotto

Autori Javie Civera, Javier Civera, Andrew Davison, Andrew J Davison, Andrew J. Davison, Martínez Montiel, José María Martínez Montiel
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.11.2011
 
EAN 9783642248337
ISBN 978-3-642-24833-7
Pagine 172
Peso 398 g
Illustrazioni XVI, 172 p.
Serie Springer Tracts in Advanced Robotics
Springer Tracts in Advanced Robotics
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Elettronica, elettrotecnica, telecomunicazioni

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.