Fr. 66.00

Machine Learning for Hackers - Case studies and algorithms to get you started

Inglese · Tascabile

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni

If you re an experienced programmer interested in crunching data, this book will get you started with machine learning a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.
Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a na

Sommario










Preface;
Machine Learning for Hackers;
How This Book Is Organized;
Conventions Used in This Book;
Using Code Examples;
Safari® Books Online;
How to Contact Us;
Acknowledgements;
Chapter 1: Using R;
1.1 R for Machine Learning;
Chapter 2: Data Exploration;
2.1 Exploration versus Confirmation;
2.2 What Is Data?;
2.3 Inferring the Types of Columns in Your Data;
2.4 Inferring Meaning;
2.5 Numeric Summaries;
2.6 Means, Medians, and Modes;
2.7 Quantiles;
2.8 Standard Deviations and Variances;
2.9 Exploratory Data Visualization;
2.10 Visualizing the Relationships Between Columns;
Chapter 3: Classification: Spam Filtering;
3.1 This or That: Binary Classification;
3.2 Moving Gently into Conditional Probability;
3.3 Writing Our First Bayesian Spam Classifier;
Chapter 4: Ranking: Priority Inbox;
4.1 How Do You Sort Something When You Don't Know the Order?;
4.2 Ordering Email Messages by Priority;
4.3 Writing a Priority Inbox;
Chapter 5: Regression: Predicting Page Views;
5.1 Introducing Regression;
5.2 Predicting Web Traffic;
5.3 Defining Correlation;
Chapter 6: Regularization: Text Regression;
6.1 Nonlinear Relationships Between Columns: Beyond Straight Lines;
6.2 Methods for Preventing Overfitting;
6.3 Text Regression;
Chapter 7: Optimization: Breaking Codes;
7.1 Introduction to Optimization;
7.2 Ridge Regression;
7.3 Code Breaking as Optimization;
Chapter 8: PCA: Building a Market Index;
8.1 Unsupervised Learning;
Chapter 9: MDS: Visually Exploring US Senator Similarity;
9.1 Clustering Based on Similarity;
9.2 How Do US Senators Cluster?;
Chapter 10: kNN: Recommendation Systems;
10.1 The k-Nearest Neighbors Algorithm;
10.2 R Package Installation Data;
Chapter 11: Analyzing Social Graphs;
11.1 Social Network Analysis;
11.2 Hacking Twitter Social Graph Data;
11.3 Analyzing Twitter Networks;
Chapter 12: Model Comparison;
12.1 SVMs: The Support Vector Machine;
12.2 Comparing Algorithms;
Works Citedbooks and publicationsbibliography ofresourcesbooks and publications; website resourcesstatisticsresources formachine learningresources forR programming languageresources for;
Colophon;

Info autore

John Myles White is a PhD candidate in Psychology at Princeton. He studies pattern recognition, decision-making, and economic behavior using behavioral methods and fMRI. He is particularly interested in anomalies of value assessment.

Riassunto

Now that storage and collection technologies are cheaper and more precise, methods for extracting relevant information from large datasets is within the reach any experienced programmer willing to crunch data.

Dettagli sul prodotto

Autori Conwa, Dre Conway, Drew Conway, Conway Drew, Myles White, John Myles White, John White, John Myles White
Editore O'Reilly Media
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.04.2012
 
EAN 9781449303716
ISBN 978-1-4493-0371-6
Pagine 322
Peso 530 g
Illustrazioni w. ill.
Categorie Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Comunicazione dati, reti

Programmiertechniken, COMPUTERS / Data Science / Machine Learning

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.