Condividi
Fr. 142.00
Stefa Berger, Stefan Berger, Siegmar Braun
200 and More NMR Experiments - A Practical Course
Inglese · Tascabile
Spedizione di solito entro 3 a 5 settimane
Descrizione
This work-book will guide you safely, in step-by-step descriptions, through every detail of the NMR experiments within, beginning with 1D routine experiments and ending with a series of advanced 3D experiments on a protein:
· Which experiment can best yield the desired information?
· How must the chosen experiment be performed?
· How does one read the required information from the spectrum?
· How does this particular pulse sequence work?
· Which other experiments give similar information?
This third edition of the book, following its two highly successful predecessors, has been revised and expanded to 206 experiments. They are organized in 15 chapters, covering test procedures and routine spectra, variable temperature measurements, the use of auxiliary reagents, 1D multipulse experiments, spectra of heteronuclides, and the application of selective pulses. The second and third dimensions are introduced using pulsed field gradients, and experiments on solid state materials are described. A key part describes 3D experiments on the protein ubiquitin with 76 amino acids.
What is new in this third edition?
1. 24 new experiments have been inserted into the 14 chapters that were in the 2nd edition, e.g., alpha/beta-SELINCOR-TOCSY, WET, DOSY, ct-COSY, HMSC, HSQC with adiabatic pulses, HETLOC. J-resolved HMBC, (1,1)- and (1,n)-ADEQUATE, STD, REDOR, and HR-MAS.
2. 20 new protein NMR experiments have been specially devised and are collected in the newly added Chapter 15, ProteinNMR, for which one needs a special model sample: fully 13C- and 15N-labeled human ubiquitin. Techniques used include the constant time principle, the PEP method, filters, gradient selection, and the echo/anti-echo procedure.
The guide has been written by experts in this field, following the principle of learning by doing: all the experiments have been specially performed for this book, exactly as described and shown in the spectra that are reproduced. Being a reference source and work-book for the NMR laboratory as well as a textbook, it is a must for every scientist working with NMR, as well as for students preparing for their laboratory courses
Sommario
Preface v
Chapter 1 The NMR Spectrometer 1
1.1 Components of an NMR Spectrometer 1
1.1.1 The Magnet 1
1.1.2 The Spectrometer Cabinet 2
1.1.3 The Computer 3
1.1.4 Maintenance 3
1.2 Tuning a Probe-Head 3
1.3 The Lock Channel 4
1.4 The Art of Shimming 6
1.4.1 The Shim Gradients 6
1.4.2 The Shimming Procedure 8
1.4.3 Gradient Shimming 11
Chapter 2 Determination of Pulse-Duration 14
Exp. 2.1: Determination of the 90° 1H Transmitter Pulse-Duration 15
Exp. 2.2: Determination of the 90° 13C Transmitter Pulse-Duration 18
Exp. 2.3: Determination of the 90° 1H Decoupler Pulse-Duration 21
Exp. 2.4: The 90° 1H Pulse with Inverse Spectrometer Configuration 24
Exp. 2.5: The 90° 13C Decoupler Pulse with Inverse Configuration 27
Exp. 2.6: Composite Pulses 30
Exp. 2.7: Radiation Damping 33
Exp. 2.8: Pulse and Receiver Phases 36
Exp. 2.9: Determination of Radiofrequency Power 39
Chapter 3 Routine NMR Spectroscopy and Standard Tests 43
Exp. 3.1: The Standard 1H NMR Experiment 44
Exp. 3.2: The Standard 13C NMR Experiment 49
Exp. 3.3: The Application of Window Functions 54
Exp. 3.4: Computer-Aided Spectral Analysis 58
Exp. 3.5: Line Shape Test for 1H NMR Spectroscopy 61
Exp. 3.6: Resolution Test for 1H NMR Spectroscopy 64
Exp. 3.7: Sensitivity Test for 1H NMR Spectroscopy 67
Exp. 3.8: Line Shape Test for 13C NMR Spectroscopy 70
Exp. 3.9: ASTM Sensitivity Test for 13C NMR Spectroscopy 73
Exp. 3.10: Sensitivity Test for 13C NMR Spectroscopy 76
Exp. 3.11: Quadrature Image Test 79
Exp. 3.12: Dynamic Range Test for Signal Amplitudes 82
Exp. 3.13: 13° Phase Stability Test 85
Exp. 3.14: Radiofrequency Field Homogeneity 88
Chapter 4 Decoupling Techniques 91
Exp. 4.1: Decoupler Calibration for Homonuclear Decoupling 92
Exp. 4.2: Decoupler Calibration for Heteronuclear Decoupling 95
Exp. 4.3: Low-Power Calibration for Heteronuclear Decoupling 98
Exp. 4.4: Homonuclear Decoupling 101
Exp. 4.5: Homonuclear Decoupling at Two Frequencies 104
Exp. 4.6: The Homonuclear SPT Experiment 107
Exp. 4.7: The Heteronuclear SPT Experiment 110
Exp. 4.8: The Basic Homonuclear NOE Difference Experiment 113
Exp. 4.9: 1D Nuclear Overhauser Difference Spectroscopy 116
Exp. 4.10: 1D NOE Spectroscopy with Multiple Selective Irradiation 119
Exp. 4.11: 1H Off-Resonance Decoupled 13C NMR Spectra 122
Exp. 4.12: The Gated 1H-Decoupling Technique 125
Exp. 4.13: The Inverse Gated 1H-Decoupling Technique 128
Exp. 4.14: 1H Single-Frequency Decoupling of 13C NMR Spectra 131
Exp. 4.15: 1H Low-Power Decoupling of 13C NMR Spectra 134
Exp. 4.16: Measurement of the Heteronuclear Overhauser Effect 137
Chapter 5 Dynamic NMR Spectroscopy 140
Exp. 5.1: Low-Temperature Calibration Using Methanol 141
Exp. 5.2: High-Temperature Calibration Using 1,2-Ethanediol 145
Exp. 5.3: Dynamic 1H NMR Spectroscopy on Dimethylformamide 149
Exp. 5.4: The Saturation Transfer Experiment 152
Exp. 5.5: Measurement of the Rotating-Frame Relaxation Time T1 155
Chapter 6 1D Multipulse Sequences 159
Exp. 6.1: Measurement of the Spin Lattice Relaxation Time T1 160
Exp. 6.2: Measurement of the Spin Spin Relaxation Time T2 164
Exp. 6.3: 13C NMR Spectra with SEFT 167
Exp. 6.4: 13C NMR Spectra with APT 170
Exp. 6.5: The Basic INEPT Technique 173
Exp. 6.6: INEPT+ 176
Exp. 6.7: Refocused INEPT 179
Exp. 6.8: Reverse INEPT 182
Exp. 6.9: DEPT-135 185
Exp. 6.10: Editing 13C NMR Spectra Using DEPT 188
Exp. 6.11: DEPTQ 191
Exp. 6.12: Multiplicity Determination Using PENDANT 194
Exp. 6.13: 1D-INADEQUATE 197
Exp. 6.14: The BIRD Filter 201
Exp. 6.15: TANGO 204
Exp. 6.16: The Heteronuclear Double-Quantum Filter 207
Exp. 6.17: Purging with a Spin-Lock Pulse 210
Exp. 6.18: Water Suppression by Presaturation 213
Exp. 6.19: Water Suppression by the Jump-and-Return Method 216
Chapter 7 NMR Spectroscopy
Info autore
Stefan Berger was intrigued by NMR after having won a bottle of beer during an introductory course in organic NMR led by Professor H. Suhr at the University of Tübingen in 1968. After completing a PhD thesis with Professor Anton Rieker, in 1973 he joined Professor J. D. Roberts at Caltech for postdoctoral work, where he also met Professor D.M. Grant and Professor D. Seebach, who were then guest professors in Pasadena. This period was decisive to try a Habilitation in NMR spectroscopy, which was achieved at the University Marburg. At the University Leipzig his aim is to combine methodological development of NMR and its application to bioorganic problems.
Riassunto
This work-book will guide you safely, in step-by-step descriptions, through every detail of the NMR experiments within, beginning with 1D routine experiments and ending with a series of advanced 3D experiments on a protein:
· Which experiment can best yield the desired information?
· How must the chosen experiment be performed?
· How does one read the required information from the spectrum?
· How does this particular pulse sequence work?
· Which other experiments give similar information?
This third edition of the book, following its two highly successful predecessors, has been revised and expanded to 206 experiments. They are organized in 15 chapters, covering test procedures and routine spectra, variable temperature measurements, the use of auxiliary reagents, 1D multipulse experiments, spectra of heteronuclides, and the application of selective pulses. The second and third dimensions are introduced using pulsed field gradients, and experiments on solid state materials are described. A key part describes 3D experiments on the protein ubiquitin with 76 amino acids.
What is new in this third edition?
1. 24 new experiments have been inserted into the 14 chapters that were in the 2nd edition, e.g., alpha/beta-SELINCOR-TOCSY, WET, DOSY, ct-COSY, HMSC, HSQC with adiabatic pulses, HETLOC. J-resolved HMBC, (1,1)- and (1,n)-ADEQUATE, STD, REDOR, and HR-MAS.
2. 20 new protein NMR experiments have been specially devised and are collected in the newly added Chapter 15, ProteinNMR, for which one needs a special model sample: fully 13C- and 15N-labeled human ubiquitin. Techniques used include the constant time principle, the PEP method, filters, gradient selection, and the echo/anti-echo procedure.
The guide has been written by experts in this field, following the principle of learning by doing: all the experiments have been specially performed for this book, exactly as described and shown in the spectra that are reproduced. Being a reference source and work-book for the NMR laboratory as well as a textbook, it is a must for every scientist working with NMR, as well as for students preparing for their laboratory courses
Testo aggiuntivo
"Beginnend von den >Basics< ...gelingt es den Autoren sehr schnell in die hochmoderne NMR-Technik einzusteigen. Dabei werden die wichtigsten der modernsten NMR-Methoden sehr gut und ausgiebig erklärt." www.chemieonline.de
Relazione
"Beginnend von den >Basics< ...gelingt es den Autoren sehr schnell in die hochmoderne NMR-Technik einzusteigen. Dabei werden die wichtigsten der modernsten NMR-Methoden sehr gut und ausgiebig erklärt."
www.chemieonline.de
Dettagli sul prodotto
Autori | Stefa Berger, Stefan Berger, Siegmar Braun |
Editore | Wiley-VCH |
Lingue | Inglese |
Formato | Tascabile |
Pubblicazione | 01.01.2004 |
EAN | 9783527310678 |
ISBN | 978-3-527-31067-8 |
Pagine | 838 |
Dimensioni | 172 mm x 239 mm x 42 mm |
Peso | 1625 g |
Illustrazioni | 468 SW-Abb., 10 Tabellen |
Categorie |
Scienze naturali, medicina, informatica, tecnica
> Chimica
Chemie, Physikalische Chemie, Analytische Chemie, chemistry, Physical Chemistry, Analytical Chemistry, NMR-Spektroskopie / MRT / Bildgebende Verfahren, NMR Spectroscopy / MRI / Imaging, NMR-Spektroskopie |
Recensioni dei clienti
Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.
Scrivi una recensione
Top o flop? Scrivi la tua recensione.