Read more
Informationen zum Autor Dr C. Anandharamakrishnan is Principal Scientist of the Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysore, India. Padma Ishwarya S. is Research Fellow of the Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysore, India. Klappentext Spray drying is a well-established method for transforming liquid materials into dry powder form. Widely used in the food and pharmaceutical industries, this technology produces high quality powders with low moisture content, resulting in a wide range of shelf stable food and other biologically significant products. Encapsulation technology for bioactive compounds has gained momentum in the last few decades and a series of valuable food compounds, namely flavours, carotenoids and microbial cells have been successfully encapsulated using spray drying.Spray Drying Technique for Food Ingredient Encapsulation provides an insight into the engineering aspects of the spray drying process in relation to the encapsulation of food ingredients, choice of wall materials, and an overview of the various food ingredients encapsulated using spray drying. The book also throws light upon the recent advancements in the field of encapsulation by spray drying, i.e., nanospray dryers for production of nanocapsules and computational fluid dynamics (CFD) modeling.Addressing the basics of the technology and its applications, the book will be a reference for scientists, engineers and product developers in the industry. Zusammenfassung Spray drying is a well-established method for transforming liquid materials into dry powder form. Widely used in the food and pharmaceutical industries, this technology produces high quality powders with low moisture content, resulting in a wide range of shelf stable food and other biologically significant products. Inhaltsverzeichnis About the authors xiv Preface xv Acknowledgments xvi 1 Introduction to spray drying 1 1.1 Introduction 1 1.2 Stage 1: Atomization 2 1.2.1 Principle of atomization 3 1.2.2 Classification of atomizers 4 1.2.2.1 Rotary atomizers 4 1.2.2.2 Pressure nozzle (or hydraulic) atomizer 6 1.2.2.3 Two-fluid nozzle atomizer 7 1.2.2.4 Ultrasonic atomizers 8 1.2.2.5 Electrohydrodynamic atomizers 9 1.3 Stage 2: Spray-air contact 11 1.4 Stage 3: Evaporation of moisture 13 1.5 Stage 4: Particle separation 15 1.5.1 Cyclone separator 15 1.5.2 Bag filter 15 1.5.3 Electrostatic precipitator 17 1.6 Morphology of spray dried particles 17 1.6.1 Skin-forming morphology with hollow internal structure 19 1.6.2 Blow-hole formation 20 1.6.3 Agglomerate 21 1.6.4 Formation of dented structure and presence of small particles within large particles 21 1.7 Spray-drying process parameters and their influence on product quality 22 1.7.1 Atomization parameters 22 1.7.1.1 Atomization pressure 22 1.7.1.2 Feed flow rate 23 1.7.1.3 Feed viscosity 23 1.7.1.4 Feed surface tension 23 1.8 Parameters of spray-air contact and evaporation 24 1.8.1 Aspirator flow rate (or speed) 24 1.8.2 Inlet temperature 24 1.8.3 Outlet temperature 25 1.8.4 Glass transition temperature (Tg) 27 1.8.5 Residence time of particles in the spray chamber 27 1.9 Types of spray dryer 27 1.9.1 Open cycle spray dryer 28 1.9.2 Closed cycle spray dryer 28 1.9.3 Semi-closed cycle spray dryer 28 1.9.4 Single-stage spray dryer 29 1.9.5 Two-stage spray dryer 29 1.9.6 Short-form 30 1.9.7 Tall-form 30 1.10 Applications and advantages of spray drying 31 References 33 2 Introduction to encapsulation of food ingredients 37 2.1 Introduction 37 2.2 ...