Fr. 147.00

Fusion Methods for Unsupervised Learning Ensembles

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

The application of a "committee of experts" or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.

List of contents

1 Introduction.- 2 Modelling Human Learning: Artificial Neural Networks.- 3 The Committee of Experts Approach: Ensemble Learning.- 4 Use of Ensembles for Outlier Overcoming.- 5 Ensembles of Topology Preserving Maps.- 6 A Novel Fusion Algorithm for Topology-Preserving Maps.-7 Conclusions.

Summary

The application of a “committee of experts” or ensemble learning to artificial neural networks
that apply unsupervised learning techniques is widely considered to enhance the effectiveness
of such networks greatly.
This book examines the potential of the ensemble meta-algorithm by describing and testing a
technique based on the combination of ensembles and statistical PCA that is able to determine
the presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.
Its central contribution concerns an algorithm for the ensemble fusion of topology-preserving
maps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.
The experimental results demonstrate that, in the majority of cases, the WeVoS algorithm
outperforms earlier map-fusion methods and the simpler versions of the algorithm with which
it is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.

Product details

Authors Bruno Baruque, Emilio Corchado, Emilio S. Corchado
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 07.12.2010
 
EAN 9783642162046
ISBN 978-3-642-16204-6
No. of pages 141
Weight 424 g
Illustrations XVII, 141 p.
Series Studies in Computational Intelligence
Studies in Computational Intelligence
Subjects Natural sciences, medicine, IT, technology > Technology > General, dictionaries

B, Artificial Intelligence, Unsupervised Learning, engineering, Computational Intelligence, Fusion Methods

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.