Fr. 50.50

Derived Functors in Functional Analysis

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The text contains for the first time in book form the state of the art of homological methods in functional analysis like characterizations of the vanishing of the derived projective limit functor or the functors Ext1 (E, F) for Fréchet and more general spaces. The researcher in real and complex analysis finds powerful tools to solve surjectivity problems e.g. on spaces of distributions or to characterize the existence of solution operators.
The requirements from homological algebra are minimized: all one needs is summarized on a few pages. The answers to several questions of V.P. Palamodov who invented homological methods in analysis also show the limits of the program.

List of contents

Introduction.- Notions from homological algebra: Derived Functors; The category of locally convex spaces.- The projective limit functor for countable spectra: Projective limits of linear spaces; The Mittag-Leffler procedure; Projective limits of locally convex spaces; Some Applications: The Mittag-Leffler theorem; Separating singularities; Surjectivity of the Cauchy-Riemann operator; Surjectivity of P(D) on spaces of smooth functions; Surjectivity of P(D) the space of distributions; Differential operators for ultradifferentiable functions of Roumieu type.- Uncountable projective spectra: Projective spectra of linear spaces; Insertion: The completion functor; Projective spectra of locally convex spaces.- The derived functors of Hom: Extk in the category of locally convex spaces; Splitting theory for Fréchet spaces; Splitting in the category of (PLS)-spaces.- Inductive spectra of locally convex spaces.- The duality functor.- References.- Index.

Summary

The text contains for the first time in book form the state of the art of homological methods in functional analysis like characterizations of the vanishing of the derived projective limit functor or the functors Ext1 (E, F) for Fréchet and more general spaces. The researcher in real and complex analysis finds powerful tools to solve surjectivity problems e.g. on spaces of distributions or to characterize the existence of solution operators.
The requirements from homological algebra are minimized: all one needs is summarized on a few pages. The answers to several questions of V.P. Palamodov who invented homological methods in analysis also show the limits of the program.

Product details

Authors J. Wengenroth, Jochen Wengenroth
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 20.02.2003
 
EAN 9783540002369
ISBN 978-3-540-00236-9
No. of pages 138
Dimensions 154 mm x 237 mm x 10 mm
Weight 262 g
Illustrations X, 138 p.
Series Lecture Notes in Mathematics
Lecture Notes in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Algebra, B, Mathematics and Statistics, Functional Analysis, Partial Differential Equations, Differential calculus & equations, Differential equations, Mathematical foundations, Category theory (Mathematics), Category Theory, Homological Algebra, Homological algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.