Fr. 49.50

Real Analysis

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

From the point of view of strict logic, a rigorous course on real analysis should precede a course on calculus. Strict logic, is, however, overruled by both history and practicality. Historically, calculus, with its origins in the 17th century, came first, and made rapid progress on the basis of informal intuition. Not until well through the 19th century was it possible to claim that the edifice was constructed on sound logical foundations. As for practicality, every university teacher knows that students are not ready for even a semi-rigorous course on analysis until they have acquired the intuitions and the sheer technical skills that come from a traditional calculus course. 1 Real analysis, I have always thought, is the pons asinorv.m of modern mathematics. This shows, I suppose, how much progress we have made in two thousand years, for it is a great deal more sophisticated than the Theorem of Pythagoras, which once received that title. All who have taught the subject know how patient one has to be, for the ideas take root gradually, even in students of good ability. This is not too surprising, since it took more than two centuries for calculus to evolve into what we now call analysis, and even a gifted student, guided by an expert teacher, cannot be expected to grasp all of the issues immediately.

List of contents

1. Introductory Ideas.- 1.1 Foreword for the Student: Is Analysis Necessary?.- 1.2 The Concept of Number.- 1.3 The Language of Set Theory.- 1.4 Real Numbers.- 1.5 Induction.- 1.6 Inequalities.- 2. Sequences and Series.- 2.1 Sequences.- 2.2 Sums, Products and Quotients.- 2.3 Monotonie Sequences.- 2.4 Cauchy Sequences.- 2.5 Series.- 2.6 The Comparison Test.- 2.7 Series of Positive and Negative Terms.- 3. Functions and Continuity.- 3.1 Functions, Graphs.- 3.2 Sums, Products, Compositions; Polynomial and Rational Functions.- 3.3 Circular Functions.- 3.4 Limits.- 3.5 Continuity.- 3.6 Uniform Continuity.- 3.7 Inverse Functions.- 4. Differentiation.- 4.1 The Derivative.- 4.2 The Mean Value Theorems.- 4.3 Inverse Functions.- 4.4 Higher Derivatives.- 4.5 Taylor's Theorem.- 5. Integration.- 5.1 The Riemann Integral.- 5.2 Classes of Integrable Functions.- 5.3 Properties of Integrals.- 5.4 The Fundamental Theorem.- 5.5 Techniques of Integration.- 5.6 Improper Integrals of the First Kind.- 5.7 Improper Integrals of the Second Kind.- 6. The Logarithmic and Exponential Functions.- 6.1 A Function Defined by an Integral.- 6.2 The Inverse Function.- 6.3 Further Properties of the Exponential and Logarithmic Functions.- Sequences and Series of Functions.- 7.1 Uniform Convergence.- 7.2 Uniform Convergence of Series.- 7.3 Power Series.- 8. The Circular Functions.- 8.1 Definitions and Elementary Properties.- 8.2 Length.- 9. Miscellaneous Examples.- 9.1 Wallis's Formula.- 9.2 Stirling's Formula.- 9.3 A Continuous, Nowhere Differentiable Function.- Solutions to Exercises.- The Greek Alphabet.

About the author













Summary

From the point of view of strict logic, a rigorous course on real analysis should precede a course on calculus. Strict logic, is, however, overruled by both history and practicality. Historically, calculus, with its origins in the 17th century, came first, and made rapid progress on the basis of informal intuition. Not until well through the 19th century was it possible to claim that the edifice was constructed on sound logical foundations. As for practicality, every university teacher knows that students are not ready for even a semi-rigorous course on analysis until they have acquired the intuitions and the sheer technical skills that come from a traditional calculus course. 1 Real analysis, I have always thought, is the pons asinorv.m of modern mathematics. This shows, I suppose, how much progress we have made in two thousand years, for it is a great deal more sophisticated than the Theorem of Pythagoras, which once received that title. All who have taught the subject know how patient one has to be, for the ideas take root gradually, even in students of good ability. This is not too surprising, since it took more than two centuries for calculus to evolve into what we now call analysis, and even a gifted student, guided by an expert teacher, cannot be expected to grasp all of the issues immediately.

Additional text

Vol.

85 (504), 2001)
"The book is a clear and structured introduction to real analysis. ... Fully worked out examples and exercises with solutions extend and illustrate the theory. Written in an easy-to-read style, combining informality and precision, the book is ideal for self-study or as a course textbook for first- and second-year undergraduates." (I. Rasa, Zentralblatt MATH, Vol. 969, 2001)

Report

Vol.

85 (504), 2001)
"The book is a clear and structured introduction to real analysis. ... Fully worked out examples and exercises with solutions extend and illustrate the theory. Written in an easy-to-read style, combining informality and precision, the book is ideal for self-study or as a course textbook for first- and second-year undergraduates." (I. Rasa, Zentralblatt MATH, Vol. 969, 2001)

Product details

Authors J. M. Howie, John M Howie, John M. Howie
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 14.05.2001
 
EAN 9781852333140
ISBN 978-1-85233-314-0
No. of pages 276
Dimensions 170 mm x 245 mm x 15 mm
Weight 559 g
Illustrations X, 276 p. 13 illus.
Series Springer Undergraduate Mathematics Series
Springer Undergraduate Mathematics Series (SUMS)
Springer Undergraduate Mathematics Series (SUMS)
Springer Undergraduate Mathematics Series
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, B, Mathematics and Statistics, Real Functions, Functions of real variables, Analysis (Mathematics), Mathematical analysis, Real analysis, real variables

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.