Read more
Algebraic graph theory is a combination of two strands. The first is the study of algebraic objects associated with graphs. The second is the use of tools from algebra to derive properties of graphs. The authors' goal has been to present and illustrate the main tools and ideas of algebraic graph theory, with an emphasis on current rather than classical topics. While placing a strong emphasis on concrete examples, the authors tried to keep the treatment self-contained.
List of contents
Graphs.- Groups.- Transitive Graphs.- Arc-Transitive Graphs.- Generalized Polygons and Moore Graphs.- Homomorphisms.- Kneser Graphs.- Matrix Theory.- Interlacing.- Strongly Regular Graphs.- Two-Graphs.- Line Graphs and Eigenvalues.- The Laplacian of a Graph.- Cuts and Flows.- The Rank Polynomial.- Knots.- Knots and Eulerian Cycles.- Glossary of Symbols.- Index.
Summary
Algebraic graph theory is a combination of two strands. The first is the study of algebraic objects associated with graphs. The second is the use of tools from algebra to derive properties of graphs. The authors's goal has been to present and illustrate the main tools and ideas of algebraic graph theory, with an emphasis on current rather then classical topics. While placing a strong emphasis on concrete examples they tried to keep the treatment self-contained.
Additional text
C. Godsil and G.F. Royle
Algebraic Graph Theory
"A welcome addition to the literature . . . beautifully written and wide-ranging in its coverage."—MATHEMATICAL REVIEWS
"An accessible introduction to the research literature and to important open questions in modern algebraic graph theory"—L'ENSEIGNEMENT MATHEMATIQUE
Report
C. Godsil and G.F. Royle
Algebraic Graph Theory
"A welcome addition to the literature . . . beautifully written and wide-ranging in its coverage."-MATHEMATICAL REVIEWS
"An accessible introduction to the research literature and to important open questions in modern algebraic graph theory"-L'ENSEIGNEMENT MATHEMATIQUE