Fr. 196.00

Analysis of Heat Equations on Domains. (Lms-31)

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Zusatztext "This book contains very interesting material! starting with the basics and progressing to lively trends of current research." -Thierry Coulhon! Cergy-Pontoise University Informationen zum Autor El-Maati Ouhabaz Klappentext This is the first comprehensive reference published on heat equations associated with non self-adjoint uniformly elliptic operators. The author provides introductory materials for those unfamiliar with the underlying mathematics and background needed to understand the properties of heat equations. He then treats Lp properties of solutions to a wide class of heat equations that have been developed over the last fifteen years. These primarily concern the interplay of heat equations in functional analysis, spectral theory and mathematical physics. This book addresses new developments and applications of Gaussian upper bounds to spectral theory. In particular, it shows how such bounds can be used in order to prove Lp estimates for heat, Schrödinger, and wave type equations. A significant part of the results have been proved during the last decade. The book will appeal to researchers in applied mathematics and functional analysis, and to graduate students who require an introductory text to sesquilinear form techniques, semigroups generated by second order elliptic operators in divergence form, heat kernel bounds, and their applications. It will also be of value to mathematical physicists. The author supplies readers with several references for the few standard results that are stated without proofs. Zusammenfassung This is the first comprehensive reference published on heat equations associated with non self-adjoint uniformly elliptic operators. The author provides introductory materials for those unfamiliar with the underlying mathematics and background needed to understand the properties of heat equations. He then treats Lp properties of solutions to a wide class of heat equations that have been developed over the last fifteen years. These primarily concern the interplay of heat equations in functional analysis, spectral theory and mathematical physics. This book addresses new developments and applications of Gaussian upper bounds to spectral theory. In particular, it shows how such bounds can be used in order to prove Lp estimates for heat, Schrödinger, and wave type equations. A significant part of the results have been proved during the last decade. The book will appeal to researchers in applied mathematics and functional analysis, and to graduate students who require an introductory text to sesquilinear form techniques, semigroups generated by second order elliptic operators in divergence form, heat kernel bounds, and their applications. It will also be of value to mathematical physicists. The author supplies readers with several references for the few standard results that are stated without proofs. Inhaltsverzeichnis Preface ix Notation xiii Chapter 1. SESQUILINEAR FORMS! ASSOCIATED OPERATORS! AND SEMIGROUPS 1 1.1 Bounded sesquilinear forms 1 1.2 Unbounded sesquilinear forms and their associated operators 3 1.3 Semigroups and unbounded operators 18 1.4 Semigroups associated with sesquilinear forms 29 1.5 Correspondence between forms! operators! and semigroups 38 Chapter 2. CONTRACTIVITY PROPERTIES 43 2.1 Invariance of closed convex sets 44 2.2 Positive and Lp-contractive semigroups 49 2.3 Domination of semigroups 58 2.4 Operations on the form-domain 64 2.5 Semigroups acting on vector-valued functions 68 2.6 Sesquilinear forms with nondense domains 74 Chapter 3. INEQUALITIES FOR SUB-MARKOVIAN SEMIGROUPS 79 3.1 Sub-Markovian semigroups and Kato type inequalities 79 3.2 Further inequalities and the corresponding domain in Lp 88 3.3 Lp-holomorphy of sub-Markovian semigroups 95 Chapter 4. UNIFORMLY ELLIPTIC OPERATORS ON DOMAINS 99 4.1 Examples of b...

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.