Sold out

Quantum Mechanics: Symmetries - With 127 Worked Examples and Problems

English · Paperback / Softback

Description

Read more

Greiner's lectures, which underlie these volumes, are internationally noted for their clarity, their completeness and for the effort that he has devoted to making physics an integral whole; his enthusiasm for his science is contagious and shines through almost every page. These volumes represent only a part of a unique and Herculean effort to make all of theoretical physics accessible to the interested student. Beyond that, they are of enormous value to the professional physicist and to all others working with quantum phenomena. Again and again the reader will find that, after dipping into a particular volume to review a specific topic, he will end up browsing, caught up by often fascinating new insights and developments with which he had not previously been familiar. Having used a number of Greiner's volumes in their original German in my teaching and research at Yale, I welcome these new and revised English translations and would recommend them enthusiastically to anyone searching for a coherent overview of physics.

List of contents

1. Symmetries in Quantum Mechanics.- 1.1 Symmetries in Classical Physics.- 1.2 Spatial Translations in Quantum Mechanics.- 1.3 The Unitary Translation Operator.- 1.4 The Equation of Motion for States Shifted in Space.- 1.5 Symmetry and Degeneracy of States.- 1.6 Time Displacements in Quantum Mechanics.- 1.7 Mathematical Supplement: Definition of a Group.- 1.8 Mathematical Supplement: Rotations and their Group Theoretical Properties.- 1.9 An Isomorphism of the Rotation Group.- 1.9.1 Infinitesimal and Finite Rotations.- 1.9.2 Isotropy of Space.- 1.10 The Rotation Operator for Many-Particle States.- 1.11 Biographical Notes.- 2. Angular Momentum Algebra Representation of Angular Momentum Operators Generators of SO(3).- 2.1 Irreducible Representations of the Rotation Group.- 2.2 Matrix Representations of Angular Momentum Operators.- 2.3 Addition of Two Angular Momenta.- 2.4 Evaluation of Clebsch-Gordan Coefficients.- 2.5 Recursion Relations for Clebsch-Gordan Coefficients.- 2.6 Explicit Calculation of Clebsch-Gordan Coefficients.- 2.7 Biographical Notes.- 3. Mathematical Supplement: Fundamental Properties of Lie Groups.- 3.1 General Structure of Lie Groups.- 3.2 Interpretation of Commutators as Generalized Vector Products, Lie s Theorem, Rank of Lie Group.- 3.3 Invariant Subgroups, Simple and Semisimple Lie Groups, Ideals.- 3.4 Compact Lie Groups and Lie Algebras.- 3.5 Invariant Operators (Casimir Operators).- 3.6 Theorem of Racah.- 3.7 Comments on Multiplets.- 3.8 Invariance Under a Symmetry Group.- 3.9 Construction of the Invariant Operators.- 3.10 Remark on Casimir Operators of Abelian Lie Groups.- 3.11 Completeness Relation for Casimir Operators.- 3.12 Review of Some Groups and Their Properties.- 3.13 The Connection Between Coordianate Transformations and Transformations of Functions.- 3.14 Biographical Notes.- 4. Symmetry Groups and Their Physical Meaning -General Considerations.- 4.1 Biographical Notes.- 5. The Isospin Group (Isobaric Spin).- 5.1 Isospin Operators for a Multi-Nucleon System.- 5.2 General Properties of Representations of a Lie Algebra.- 5.3 Regular (or Adjoint) Representation of a Lie Algebra.- 5.4 Transformation Law for Isospin Vectors.- 5.5 Experimental Test of Isospin Invariance.- 5.6 Biographical Notes.- 6. The Hypercharge.- 6.1 Biographical Notes.- 7. The SU(3) Symmetry.- 7.1 The Groups U(n) and SU(n).- 7.1.1. The Generators of U(n) and SU(n).- 7.2 The Generators of SU(3).- 7.3 The Lie Algebra of SU(3).- 7.4 The Subalgebras of the SU(3)-Lie Algebra and the Shift Operators.- 7.5 Coupling of T-, U- and V-Multiplets.- 7.6 Quantitative Analysis of Our Reasoning.- 7.7 Further Remarks About the Geometric Form of an SU(3) Multiplet.- 7.8 The Number of States on Mesh Points on Inner Shells.- 8. Quarks and SU(3).- 8.1 Searching for Quarks.- 8.2 The Transformation Properties of Quark States.- 8.3 Construction of all SU(3) Multiplets from the Elementary Representations [3] and 3.- 8.4 Construction of the Representation D(p, q) from Quarks and Antiquarks.- 8.4.1. The Smallest SU(3) Representations.- 8.5 Meson Multiplets.- 8.6 Rules for the Reduction of Direct Product of SU(3) Multiplets.- 8.7 U-spin Invariance.- 8.8 Test of U-spin Invariance.- 8.9 The Gell-Mann-Okubo Mass Formula.- 8.10 The Clebsch-Gordan Coefficients of the SU(3).- 8.11 Quark Models with Inner Degrees of Freedom.- 8.12 The Mass Formula in SU(6).- 8.13 Magnetic Moments in the Quark Model.- 8.14 Excited Meson and Baryon States.- 8.14.1 Combinations of More Than Three Quarks.- 8.15 Excited States with Orbital Angular Momentum.- 9. Representations of the Permutation Group and Young Tableaux.- 9.1 The Permutation Group and Identical Particles.- 9.2 The Standard Form of Young Diagrams.- 9.3 Standard Form and Dimension of Irreducible Representations of the Permutation Group SN.- 9.4 The Connection Between SU(2) and S2.- 9.5 The Irreducible Representations of SU(n).- 9.6 Determination of the Dimension.- 9.7 The SU(n 1) Subgroups of SU(n).- 9.8 Decompositio

About the author

Prof. Dr. rer. nat. Dr. h. c. mult. Walter Greiner, geb. Oktober 1935 im Thüringer Wald, Promotion 1961 in Freiburg im Breisgau, 1962-64 Assistent Professor an der University of Maryland, seit 1964/65 ordentlicher Professor für Theoretische Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main und Direktor des Instituts für Theoretische Physik. Gastprofessuren unter anderem an der Florida State University, University of Virginia, Los Alamos Scientific Laboratory, University of California Berkeley, Oak Ridge National Laboratory, University of Melbourne, Yale University, Vanderbilt University, University of Arizona. Hauptarbeitsgebiete sind die Struktur und Dynamik der elementaren Materie (Quarks, Gluonen, Mesonen, Baryonen, Atomkerne), Schwerionenphysik, Feldtheorie (Quantenelektrodynamik, Eichtheorie der schwachen Wechselwirkung, Quantenchromodynamik, Theorie der Gravitation), Atomphysik.§ 974 Empfänger des Max-Born-Preises und der Max-Born-Medaille des Institute of Physics (London) und der Deutsche Physikalische Gesellschaft, 1982 des Otto-Hahn-Preises der Stadt Frankfurt am Main, 1998 der Alexander von Humboldt-Medaille, 1999 Officier dans l'Ordre des Palmes Academiques.§Inhaber zahlreicher Ehrendoktorwürden (unter anderem der University of Witwatersrand, Johannesburg, der Universite Louis Pasteur Strasbourg, der UNAM Mexico, der Universitäten Bucharest, Tel Aviv, Nantes, St. Petersburg, Moskau, Debrecen, Dubna und anderen) sowie Ehrenprofessuren (University of Bejing, China, und Jilin University Changchun, China) und Ehrenmitglied vieler Akademien.

Product details

Authors D. A. Bromley, Walter Greiner, Berndt Müller
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.1994
 
EAN 9783540580805
ISBN 978-3-540-58080-5
No. of pages 526
Weight 1175 g
Illustrations 1 SW-Abb.,
Sets Quantum Mechanics
Quantum Mechanics
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.