Fr. 134.00

Managing Uncertainty in Expert Systems

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

3. Textbook for a course in expert systems,if an emphasis is placed on Chapters 1 to 3 and on a selection of material from Chapters 4 to 7. There is also the option of using an additional commercially available sheU for a programming project. In assigning a programming project, the instructor may use any part of a great variety of books covering many subjects, such as car repair. Instructions for mostofthe "weekend mechanic" books are close stylisticaUy to expert system rules. Contents Chapter 1 gives an introduction to the subject matter; it briefly presents basic concepts, history, and some perspectives ofexpert systems. Then itpresents the architecture of an expert system and explains the stages of building an expert system. The concept of uncertainty in expert systems and the necessity of deal ing with the phenomenon are then presented. The chapter ends with the descrip tion of taxonomy ofexpert systems. Chapter 2 focuses on knowledge representation. Four basic ways to repre sent knowledge in expert systems are presented: first-order logic, production sys tems, semantic nets, and frames. Chapter 3 contains material about knowledge acquisition. Among machine learning techniques, a methodofrule learning from examples is explained in de tail. Then problems ofrule-base verification are discussed. In particular, both consistency and completeness oftherule base are presented.

List of contents

1 Introdution.- 1.1 Architecture of an Expert System.- 1.2 Building Expert Systems.- 1.3 Uncertainty in Expert Systems.- 1.4 Taxonomy of Expert Systems.- 2 Knowledge Representation.- 2.1 First-Order Logic.- 2.2 Production Systems.- 2.3 Semantic Nets.- 2.4 Frames.- Exercises.- 3 Knowledge Acquisition.- 3.1 Manual and Interactive Techniques.- 3.2 Machine Learning.- 3.3 Rule Learning from Examples.- 3.4 Rule Base Verification.- Exercises.- 4 One-Valued Quantitative Approaches.- 4.1 Probability Theory.- 4.2 Systems using Bayes' Rule.- 4.3 Belief Networks.- 4.4 Certainty Factors.- Exercises.- 5 Two-Valued Quantitative Approaches.- 5.1 Dempster-Shafer Theory.- 5.2 Inferno.- 5.3 Concluding Remarks.- Exercises.- 6 Set-Valued Quantitative Approaches.- 6.1 Fuzzy Set Theory.- 6.2 Incidence Calculus.- 6.3 Rough Set Theory.- 6.4 Concluding Remarks.- Exercises.- 7 Qualitative Approaches.- 7.1 Modal Logics.- 7.2 Nonmonotonicity.- 7.3 Plausible Reasoning.- 7.4 Heuristic Methods.- 7.5 Concluding Remarks.- Exercises.- References.

Product details

Authors Jerzy W.Grzymala- Busse, Jerzy W Grzymala-Busse, Jerzy W. Grzymala-Busse
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 29.06.2009
 
EAN 9780792391692
ISBN 978-0-7923-9169-2
No. of pages 224
Dimensions 155 mm x 235 mm x 18 mm
Weight 537 g
Illustrations XXI, 224 p.
Series The Springer International Series in Engineering and Computer Science
The Springer International Series in Engineering and Computer Science, Volume 143
The Springer International Series in Engineering and Computer Science
Subject Natural sciences, medicine, IT, technology > IT, data processing

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.