Fr. 256.00

Introduction to Stochastic Search and Optimization - Estimation, Simulation, and Control

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor JAMES C. SPALL is a member of the Principal Professional Staff at the Johns Hopkins University, Applied Physics Laboratory, and is the Chair of the Applied and Computational Mathematics Program within the Johns Hopkins School of Engineering. Dr. Spall has published extensively in the areas of control and statistics and holds two U.S. patents. Among other appointments, he is Associate Editor at Large for the IEEE Transactions on Automatic Control and Contributing Editor for the Current Index to Statistics. Dr. Spall has received numerous research and publications awards and is an elected Fellow of the Institute of Electrical and Electronics Engineers (IEEE). Klappentext * Unique in its survey of the range of topics.* Contains a strong, interdisciplinary format that will appeal to both students and researchers.* Features exercises and web links to software and data sets. Zusammenfassung * Unique in its survey of the range of topics.* Contains a strong, interdisciplinary format that will appeal to both students and researchers.* Features exercises and web links to software and data sets. Inhaltsverzeichnis Preface. Stochastic Search and Optimization: Motivation and Supporting Results. Direct Methods for Stochastic Search. Recursive Estimation for Linear Models. Stochastic Approximation for Nonlinear Root-Finding. Stochastic Gradient Form of Stochastic Approximation. Stochastic Approximation and the Finite-Difference Method. Simultaneous Perturbation Stochastic Approximation. Annealing-Type Algorithms. Evolutionary Computation I: Genetic Algorithms. Evolutionary Computation II: General Methods and Theory. Reinforcement Learning via Temporal Differences. Statistical Methods for Optimization in Discrete Problems. Model Selection and Statistical Information. Simulation-Based Optimization I: Regeneration, Common Random Numbers, and Selection Methods. Simulation-Based Optimization II: Stochastic Gradient and Sample Path Methods. Markov Chain Monte Carlo. Optimal Design for Experimental Inputs. Appendix A. Selected Results from Multivariate Analysis. Appendix B. Some Basic Tests in Statistics. Appendix C. Probability Theory and Convergence. Appendix D. Random Number Generation. Appendix E. Markov Processes. Answers to Selected Exercises. References. Frequently Used Notation. Index....

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.