Read more
In this monograph finite generalized quadrangles are classified by symmetry, generalizing the celebrated Lenz-Barlotti classification for projective planes. The book is self-contained and serves as introduction to the combinatorial, geometrical and group-theoretical concepts that arise in the classification and in the general theory of finite generalized quadrangles, including automorphism groups, elation and translation generalized quadrangles, generalized ovals and generalized ovoids, span-symmetric generalized quadrangles, flock geometry and property (G), regularity and nets, split BN-pairs of rank 1, and the Moufang property.
List of contents
Introduction: History, Motivation.- 1. Finite Generalized Quadrangles.- 2. Elation Generalized Quadrangles, Translation Generalized Quadrangles and Flocks.- 3. The Known Generalized Quadrangles.- 4. Substructures of Finite Nets.- 5. Symmetry Class I: Generalized Quadrangles with Axes of Symmetry.- 6. Symmetry Class II: Concurrent Axes of Symmetry in Generalized Quadrangles.- 7. Symmetry Class II: Span-Symmetric Generalized Quadrangles.- 8. Generalized Quadrangles with Distinct Translation Points.- 9. The Classification Theorem.- 10. Symmetry Class IV.3: TGQs which Arise from Flocks .- 11. A Characterization Theorem and a Classification Theorem.- 12. Symmetry Class V.- 13. Recapitulation of the Classification Theorem.- 14. Semi Quadrangles.- Appendices.- References.
Summary
In this self-contained monograph, finite generalized quadrangles are classified by symmetry, generalizing the celebrated Lenz--Barlotti classification for projective planes. It serves as an introduction to the combinatorial, geometrical, and group-theoretical concepts that arise in the classification and the general theory of finite generalized quadrangles. Several long-standing open problems are solved by using a mixture of geometrical, combinatorial, and group-theoretical arguments. Further, a conjectural classification program for all finite transaltion generalized quadrangles is decribed. The book will be useful to advanced graduate students and researchers in geometry, group theory, or algebraic combinatorics.