Read more
Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view.
The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.
List of contents
Preface.- L.A. Caffarelli: The Monge-Ampère equation and Optimal Transportation, an elementary view.- G. Buttazzo, L. De Pascale: Optimal Shapes and Masses, and Optimal Transportation Problems.- C. Villani: Optimal Transportation, dissipative PDE's and functional inequalities.- Y. Brenier: Extended Monge-Kantorowich Theory.- L. Ambrosio, A. Pratelli: Existence and Stability results in the L1 Theory of Optimal Transportation.
Summary
Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view.
The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.