Fr. 165.60

Higher Structure in Geometry and Physics - In Honor of Murray Gerstenhaber and Jim Stasheff

English · Hardback

Shipping usually within 3 to 5 weeks (title will be specially ordered)

Description

Read more

This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics- such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics- and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. The ideas of higher homotopies and algebraic deformation have a growing number of theoretical applications and have played a prominent role in recent mathematical advances. For example, algebraic versions of higher homotopies have led eventually to the proof of the formality conjecture and the deformation quantization of Poisson manifolds. As observed in deformations and deformation philosophy, a basic observation is that higher homotopy structures behave much better than strict structures.
Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. Higher Structures in Geometry and Physics is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.

List of contents

Topics in Algebraic deformation theory.- Origins and breadth of the theory of higher homotopies.- The deformation philosophy, quantization and noncommutative space-time structures.- Differential geometry of Gerbes and differential forms.- Symplectic connections of Ricci type and star products.- Effective Batalin-Vilkovisky theories, equivariant configuration spaces and cyclic chains.- Noncommutative calculus and the Gauss-Manin connection.- The Lie algebra perturbation lemma.- Twisting Elements in Homotopy G-algebras.- Homological perturbation theory and homological mirror symmetry.- Categorification of acyclic cluster algebras: an introduction.- Poisson and symplectic functions in Lie algebroid theory.- The diagonal of the Stasheff polytope.- Permutahedra, HKR isomorphism and polydifferential Gerstenhaber-Schack complex.- Applications de la bi-quantification a la théorie de Lie.- Higher homotopy Hopf algebras found: A ten year retrospective

Summary

This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. The ideas of higher homotopies and algebraic deformation have a growing number of theoretical applications and have played a prominent role in recent mathematical advances. For example, algebraic versions of higher homotopies have led eventually to the proof of the formality conjecture and the deformation quantization of Poisson manifolds. As observed in deformations and deformation philosophy, a basic observation is that higher homotopy structures behave much better than strict structures.
Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. Higher Structures in Geometry and Physics is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.

Product details

Assisted by Alberto S Cattaneo (Editor), Alberto S. Cattaneo (Editor), Anthon Giaquinto (Editor), Anthony Giaquinto (Editor), Ping Xu (Editor)
Publisher Springer, Basel
 
Languages English
Product format Hardback
Released 23.12.2010
 
EAN 9780817647346
ISBN 978-0-8176-4734-6
No. of pages 362
Dimensions 160 mm x 27 mm x 244 mm
Weight 706 g
Illustrations XV, 362 p. 92 illus.
Series Progress in Mathematics
Progress in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.