Share
Fr. 202.90
Peter Buser
Geometry and Spectra of Compact Riemann Surfaces
English · Paperback / Softback
Shipping usually within 3 to 5 weeks (title will be specially ordered)
Description
This book deals with two subjects. The first subject is the geometric theory of compact Riemann surfaces of genus greater than one, the second subject is the Laplace operator and its relationship with the geometry of compact Riemann surfaces. The book grew out of the idea, a long time ago, to publish a Habili- tionsschrift, a thesis, in which I studied Bers' pants decomposition theorem and its applications to the spectrum of a compact Riemann surface. A basic tool in the thesis was cutting and pasting in connection with the trigono metry of hyperbolic geodesic polygons. As this approach to the geometry of a compact Riemann surface did not exist in book form, I took this book as an occasion to carry out the geometry in detail, and so it grew by several chapters. Also, while I was writing things up there was much progress in the field, and some of the new results were too challenging to be left out of the book. For instance, Sunada's construction of isospectral manifolds was fascinating, and I got hooked on constructing examples for quite a while. So time went on and the book kept growing. Fortunately, the interest in exis tence proofs also kept growing. The editor, for instance, was interested, and so was my family. And so the book finally assumed its present form. Many of the proofs given here are new, and there are also results which appear for the first time in print.
List of contents
Hyperbolic Structures.- Trigonometry.- Y-Pieces and Twist Parameters.- The Collar Theorem.- Bers' Constant and the Hairy Torus.- The Teichmüller Space.- The Spectrum of the Laplacian.- Small Eigenvalues.- Closed Geodesics and Huber's Theorem.- Wolpert's Theorem.- Sunada's Theorem.- Examples of Isospectral Riemann Surfaces.- The Size of Isospectral Families.- Perturbations of the Laplacian in Teichmüller Space.
Summary
This book deals with two subjects. The first subject is the geometric theory of compact Riemann surfaces of genus greater than one, the second subject is the Laplace operator and its relationship with the geometry of compact Riemann surfaces. The book grew out of the idea, a long time ago, to publish a Habili- tionsschrift, a thesis, in which I studied Bers' pants decomposition theorem and its applications to the spectrum of a compact Riemann surface. A basic tool in the thesis was cutting and pasting in connection with the trigono metry of hyperbolic geodesic polygons. As this approach to the geometry of a compact Riemann surface did not exist in book form, I took this book as an occasion to carry out the geometry in detail, and so it grew by several chapters. Also, while I was writing things up there was much progress in the field, and some of the new results were too challenging to be left out of the book. For instance, Sunada's construction of isospectral manifolds was fascinating, and I got hooked on constructing examples for quite a while. So time went on and the book kept growing. Fortunately, the interest in exis tence proofs also kept growing. The editor, for instance, was interested, and so was my family. And so the book finally assumed its present form. Many of the proofs given here are new, and there are also results which appear for the first time in print.
Additional text
From the reviews:
"Anyone familiar with the author's hands-on approach to Riemann surfaces will be gratified by both the breadth and the depth of the topics considered here. The exposition is also extremely clear and thorough. Anyone not familiar with the author's approach is in for a real treat." —Mathematical Reviews
“Originally published as Volume 106 in the series Progress in Mathematics, this version is a reprint of the classic monograph, 1992 edition, consisting of two parts. … An appendix is devoted to curves and isotopies. The book is a very useful reference for researches and also for graduate students interested in the geometry of compact Riemann surfaces of constant curvature -- 1 and their length and eigenvalue spectra.” (Liliana Răileanu, Zentralblatt MATH, Vol. 1239, 2012)
“Geometry and Spectra of Compact Riemann Surfaces is a pleasure to read. There is a lot of motivation given, examples proliferate, propositions and theorems come equipped with clear proofs, and excellent drawings … . a fine piece of scholarship and a pedagogical treat.” (Michael Berg, The Mathematical Association of America, May, 2011)
Report
From the reviews:
"Anyone familiar with the author's hands-on approach to Riemann surfaces will be gratified by both the breadth and the depth of the topics considered here. The exposition is also extremely clear and thorough. Anyone not familiar with the author's approach is in for a real treat." -Mathematical Reviews
"Originally published as Volume 106 in the series Progress in Mathematics, this version is a reprint of the classic monograph, 1992 edition, consisting of two parts. ... An appendix is devoted to curves and isotopies. The book is a very useful reference for researches and also for graduate students interested in the geometry of compact Riemann surfaces of constant curvature -- 1 and their length and eigenvalue spectra." (Liliana Raileanu, Zentralblatt MATH, Vol. 1239, 2012)
"Geometry and Spectra of Compact Riemann Surfaces is a pleasure to read. There is a lot of motivation given, examples proliferate, propositions and theorems come equipped with clear proofs, and excellent drawings ... . a fine piece of scholarship and a pedagogical treat." (Michael Berg, The Mathematical Association of America, May, 2011)
Product details
Authors | Peter Buser |
Publisher | Springer, Basel |
Languages | English |
Product format | Paperback / Softback |
Released | 25.11.2010 |
EAN | 9780817649913 |
ISBN | 978-0-8176-4991-3 |
No. of pages | 456 |
Dimensions | 157 mm x 236 mm x 26 mm |
Weight | 690 g |
Illustrations | XIV, 456 p. 145 illus. |
Series |
Modern Birkhäuser Classics Modern Birkhauser Classics Modern Birkhäuser Classics |
Subject |
Natural sciences, medicine, IT, technology
> Mathematics
> Analysis
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.