Fr. 134.00

Max-linear Systems: Theory and Algorithms - Theory and Algorithms

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

Recent years have seen a significant rise of interest in max-linear theory and techniques. Specialised international conferences and seminars or special sessions devoted to max-algebra have been organised. This book aims to provide a first detailed and self-contained account of linear-algebraic aspects of max-algebra for general (that is both irreducible and reducible) matrices.
Among the main features of the book is the presentation of the fundamental max-algebraic theory (Chapters 1-4), often scattered in research articles, reports and theses, in one place in a comprehensive and unified form. This presentation is made with all proofs and in full generality (that is for both irreducible and reducible matrices). Another feature is the presence of advanced material (Chapters 5-10), most of which has not appeared in a book before and in many cases has not been published at all.
Intended for a wide-ranging readership, this book will be useful for anyone with basic mathematical knowledge (including undergraduate students) who wish to learn fundamental max-algebraic ideas and techniques. It will also be useful for researchers working in tropical geometry or idempotent analysis.

List of contents

Max-algebra: Two Special Features.- One-sided Max-linear Systems and Max-algebraic Subspaces.- Eigenvalues and Eigenvectors.- Maxpolynomials. The Characteristic Maxpolynomial.- Linear Independence and Rank. The Simple Image Set.- Two-sided Max-linear Systems.- Reachability of Eigenspaces.- Generalized Eigenproblem.- Max-linear Programs.- Conclusions and Open Problems.

Summary

Recent years have seen a significant rise of interest in max-linear theory and techniques. Specialised international conferences and seminars or special sessions devoted to max-algebra have been organised. This book aims to provide a first detailed and self-contained account of linear-algebraic aspects of max-algebra for general (that is both irreducible and reducible) matrices.

Among the main features of the book is the presentation of the fundamental max-algebraic theory (Chapters 1-4), often scattered in research articles, reports and theses, in one place in a comprehensive and unified form. This presentation is made with all proofs and in full generality (that is for both irreducible and reducible matrices). Another feature is the presence of advanced material (Chapters 5-10), most of which has not appeared in a book before and in many cases has not been published at all.

Intended for a wide-ranging readership, this book will be useful for anyone with basic mathematical knowledge (including undergraduate students) who wish to learn fundamental max-algebraic ideas and techniques. It will also be useful for researchers working in tropical geometry or idempotent analysis.

Product details

Authors Peter Butkovi, Peter Butkovic, Peter Butkovič
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 15.11.2010
 
EAN 9781849962988
ISBN 978-1-84996-298-8
No. of pages 274
Dimensions 170 mm x 21 mm x 242 mm
Weight 578 g
Illustrations XVIII, 274 p.
Series Springer Monographs in Mathematics
Schriftenreihe Markt und Marketing
Springer Monographs in Mathematics
Schriftenreihe Markt und Marketing
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.