Fr. 69.00

Wiener Chaos: Moments, Cumulants and Diagrams - A survey with Computer Implementation

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

The concept of Wiener chaos generalizes to an infinite-dimensional setting the
properties of orthogonal polynomials associated with probability distributions
on the real line. It plays a crucial role in modern probability theory, with applications
ranging from Malliavin calculus to stochastic differential equations and from
probabilistic approximations to mathematical finance.
This book is concerned with combinatorial structures arising from the study
of chaotic random variables related to infinitely divisible random measures.
The combinatorial structures involved are those of partitions of finite sets,
over which Möbius functions and related inversion formulae are defined.
This combinatorial standpoint (which is originally due to Rota and Wallstrom)
provides an ideal framework for diagrams, which are graphical devices used
to compute moments and cumulants of random variables.
Several applications are described, in particular, recent limit theorems for chaotic random variables.
An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.

About the author

Giovanni Peccati is a Professor of Stochastic Analysis and Mathematical Finance at Luxembourg University. Murad S. Taqqu is a Professor of Mathematics and Statistics at Boston University.

Summary

The concept of Wiener chaos generalizes to an infinite-dimensional setting the
properties of orthogonal polynomials associated with probability distributions
on the real line. It plays a crucial role in modern probability theory, with applications
ranging from Malliavin calculus to stochastic differential equations and from
probabilistic approximations to mathematical finance.
This book is concerned with combinatorial structures arising from the study
of chaotic random variables related to infinitely divisible random measures.
The combinatorial structures involved are those of partitions of finite sets,
over which Möbius functions and related inversion formulae are defined.
This combinatorial standpoint (which is originally due to Rota and Wallstrom)
provides an ideal framework for diagrams, which are graphical devices used
to compute moments and cumulants of random variables.
Several applications are described, in particular, recent limit theorems for chaotic random variables.
An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.

Report

From the book reviews:
"The objective of this book is to provide a detailed account of the combinatorial structures arising from the study of multiple stochastic integrals. ... the presentation is very clear, with all the necessary proofs and examples. The authors clearly accomplish the three goals they list in the introduction (to provide a unified approach to the diagram method using set partition, to give a combinatorial analysis of multiple stochastic integrals in the most general setting, and to discuss chaotic limit theorems)." (Sergey V. Lototsky, Mathematical Reviews, Issue 2012 d)
"The book provides a comprehensive and detailed introduction to the theory of multiple stochastic integrals and some results for the Wiener chaos representation of random variables. ... The book is recommended for anyone who needs a precise guidance to the theory." (Gábor Sz cs, Acta Scientiarum Mathematicarum (Szeged), Vol. 77 (3-4), 2011)

Product details

Authors Giovann Peccati, Giovanni Peccati, Murad S Taqqu, Murad S. Taqqu
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 30.12.2010
 
EAN 9788847016781
ISBN 978-88-470-1678-1
No. of pages 274
Weight 593 g
Illustrations XIII, 274 p.
Series Bocconi & Springer Series
Bocconi & Springer Series
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.