Fr. 84.00

Semismooth and Smoothing Newton Methods

English · Hardback

Will be released 12.06.2026

Description

Read more

Since its introduction by Isaac Newton (1669) and Joseph Raphson (1690) more than three hundred years ago, Newton's method or the Newton-Raphson method has become the most important technique for solving the system of smooth algebraic equations. Despite its simple structure, Newton's method possesses a fast local convergence rate - superlinear or quadratic. This outstanding feature of Newton's method leads to numerous extensions in the literature. Most of these extensions focus on systems of smooth equations. Since the 1980s, researchers the fields of optimization and numerical analysis have been working on extending Newton's method to non-differentiable system of algebraic equations.

This book presents a comprehensive treatment of the development of the generalized Newton method for solving nonsmooth equations and related problems which grow out of science, engineering, economics and business and sheds light on further investigations of this fascinating topic oriented towards applications in optimization. Semismooth analysis, which form the backbone of further developments, is developed in Chapter 1. Topics then unfold systematically, with apposite illustrations and examples.

Graduate students and researchers in this area will find the book useful.

List of contents

Preface.- Smooth Analysis.- Semismooth Newton Methods.- Smoothing Newton Methods.- Complementarity Problems and Variational Inequalities.- Semismooth Integration Functions.- Semismooth Matrix Functions.- Infinite Dimensional Spaces.- Bibliography.- Index.

About the author

Michael Ulbrich ist Professor für Mathematische Optimierung an der Technischen Universität München.

Summary

Since its introduction by Isaac Newton (1669) and Joseph Raphson (1690) more than three hundred years ago, Newton's method or the Newton-Raphson method has become the most important technique for solving the system of smooth algebraic equations. Despite its simple structure, Newton's method possesses a fast local convergence rate - superlinear or quadratic. This outstanding feature of Newton's method leads to numerous extensions in the literature. Most of these extensions focus on systems of smooth equations. Since the 1980s, researchers the fields of optimization and numerical analysis have been working on extending Newton's method to non-differentiable system of algebraic equations.

This book presents a comprehensive treatment of the development of the generalized Newton method for solving nonsmooth equations and related problems which grow out of science, engineering, economics and business and sheds light on further investigations of this fascinating topic oriented towards applications in optimization. Semismooth analysis, which form the backbone of further developments, is developed in Chapter 1. Topics then unfold systematically, with apposite illustrations and examples.

Graduate students and researchers in this area will find the book useful.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.