Fr. 235.20

Advances in Optimization and Approximation

English · Hardback

Shipping usually within 3 to 5 weeks (title will be specially ordered)

Description

Read more

2. The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3. Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . 60 4. Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A Simple Proof for a Result of Ollerenshaw on Steiner Trees . . . . . . . . . . 68 Xiufeng Du, Ding-Zhu Du, Biao Gao, and Lixue Qii 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2. In the Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3. In the Rectilinear Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4. Discussion . . . . . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Optimization Algorithms for the Satisfiability (SAT) Problem . . . . . . . . . 72 Jun Gu 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2. A Classification of SAT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:3 3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 4. Complete Algorithms and Incomplete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5. Optimization: An Iterative Refinement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6. Local Search Algorithms for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7. Global Optimization Algorithms for SAT Problem . . . . . . . . . . . . . . . . . . . . . . . . 106 8. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Osman Guier 1. Introduction . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2. Convergence for Function Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3. Convergence for Arbitrary Maximal Monotone Operators . . . . . . . . . . . . . . . . . 161 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Adding and Deleting Constraints in the Logarithmic Barrier Method for LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 D. den Hertog, C. Roos, and T. Terlaky 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

List of contents

Preface. Scheduling Multiprocessor Flow Shops; Bo Chen. The k-Walk Polyhedron; C.R. Coullard, A.B. Gamble, Jin Liu. Two Geometric Optimization Problems; B. Dasgupta, V. Roychowdhury. A Scaled Gradient Projection Algorithm for Linear Complementarity Problems; Jiu Ding. A Simple Proof for a Result of Ollerenshaw on Steiner Trees; Xiufeng Du, Ding-Zhu Du, Biao Gao, Lixue Qü. Optimization Algorithms for the Satisfiability (SAT) Problem; Jun Gu. Ergodic Convergence in Proximal Point Algorithms with Bregman Functions; O. Güler. Adding and Deleting Constraints in the Logarithmic Barrier Method for LP; D. den Hertog, C. Roos, T. Terlaky. A Projection Method for Solving Infinite Systems of Linear Inequalities; Hui Hu. Optimization Problems in Molecular Biology; Tao Jiang, Ming Li. A Dual Affine Scaling Based Algorithm for Solving Linear Semi-Infinite Programming Problems; Chih-Jen Lin, Shu-Cherng Fang, Soon-Yi Wu. A Genuine Quadratically Convergent Polynomial Interior Point Algorithm for Linear Programming; Zhi-Quan Luo, Yinyu Ye. A Modified Barrier Function Method for Linear Programming; M.R. Osborne. A New Facet Class and a Polyhedral Method for the Three-Index Assignment Problem; Liqun Qi, E. Balas, G. Gwan. A Finite Simplex-Active-Set Method for Monotropic Piecewise Quadratic Programming; R.T. Rockafellar, Jie Sun. A New Approach in the Optimization of Exponential Queues; S.H. Xu. The Euclidean Facilities Location Problem; Guoliang Xue, Changyu Wang. Optimal Design of Large-Scale Opencut Coal Mine System; Dezhuang Yang. On the Strictly Complementary Slackness Relation in Linear Programming; Shuzhong Zhang. Analytical Properties of the Central Trajectory in Interior Point Methods; Gongyun Zhao,Jishan Zhu. TheApproximation of Fixed Points of Robust Mappings; Quan Zheng, Deming Zhuang.

Summary

Offers a collection of research papers in optimization and approximation that covers the research on optimization problems, including scheduling, location, assignment, linear and nonlinear programming problems as well as problems in molecular biology. This book focuses on algorithmic aspects of research work in optimization.

Product details

Assisted by Ding-Zhu Du (Editor), Ding-Zhu Du (Editor), Du Ding-Zhu Du (Editor), Ding-Zh Du (Editor), Ding-Zhu Du (Editor), Jie Sun (Editor), Jie Sun (Editor), Sun Jie Sun (Editor), Sun (Editor), Sun (Editor), Jie Sun (Editor)
Publisher Springer Netherlands
 
Languages English
Product format Hardback
Released 23.11.2011
 
EAN 9780792327851
ISBN 978-0-7923-2785-1
No. of pages 390
Weight 1650 g
Illustrations XIV, 390 p.
Series Nonconvex Optimization and Its Applications
Nonconvex Optimization and Its Applications (closed)
Water Science and Technology
Nonconvex Optimization and Its Applications
Nonconvex Optimization and Its
Water Science and Technology
Subject Natural sciences, medicine, IT, technology > Mathematics > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.