Share
Fr. 235.20
Ding-Zhu Du, Ding-Zhu Du, Du Ding-Zhu Du, Ding-Zh Du, Ding-Zhu Du, Jie Sun...
Advances in Optimization and Approximation
English · Hardback
Shipping usually within 3 to 5 weeks (title will be specially ordered)
Description
2. The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3. Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . 60 4. Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A Simple Proof for a Result of Ollerenshaw on Steiner Trees . . . . . . . . . . 68 Xiufeng Du, Ding-Zhu Du, Biao Gao, and Lixue Qii 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2. In the Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3. In the Rectilinear Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4. Discussion . . . . . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Optimization Algorithms for the Satisfiability (SAT) Problem . . . . . . . . . 72 Jun Gu 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2. A Classification of SAT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:3 3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 4. Complete Algorithms and Incomplete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5. Optimization: An Iterative Refinement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6. Local Search Algorithms for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7. Global Optimization Algorithms for SAT Problem . . . . . . . . . . . . . . . . . . . . . . . . 106 8. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Osman Guier 1. Introduction . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2. Convergence for Function Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3. Convergence for Arbitrary Maximal Monotone Operators . . . . . . . . . . . . . . . . . 161 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Adding and Deleting Constraints in the Logarithmic Barrier Method for LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 D. den Hertog, C. Roos, and T. Terlaky 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of contents
Preface. Scheduling Multiprocessor Flow Shops; Bo Chen. The k-Walk Polyhedron; C.R. Coullard, A.B. Gamble, Jin Liu. Two Geometric Optimization Problems; B. Dasgupta, V. Roychowdhury. A Scaled Gradient Projection Algorithm for Linear Complementarity Problems; Jiu Ding. A Simple Proof for a Result of Ollerenshaw on Steiner Trees; Xiufeng Du, Ding-Zhu Du, Biao Gao, Lixue Qü. Optimization Algorithms for the Satisfiability (SAT) Problem; Jun Gu. Ergodic Convergence in Proximal Point Algorithms with Bregman Functions; O. Güler. Adding and Deleting Constraints in the Logarithmic Barrier Method for LP; D. den Hertog, C. Roos, T. Terlaky. A Projection Method for Solving Infinite Systems of Linear Inequalities; Hui Hu. Optimization Problems in Molecular Biology; Tao Jiang, Ming Li. A Dual Affine Scaling Based Algorithm for Solving Linear Semi-Infinite Programming Problems; Chih-Jen Lin, Shu-Cherng Fang, Soon-Yi Wu. A Genuine Quadratically Convergent Polynomial Interior Point Algorithm for Linear Programming; Zhi-Quan Luo, Yinyu Ye. A Modified Barrier Function Method for Linear Programming; M.R. Osborne. A New Facet Class and a Polyhedral Method for the Three-Index Assignment Problem; Liqun Qi, E. Balas, G. Gwan. A Finite Simplex-Active-Set Method for Monotropic Piecewise Quadratic Programming; R.T. Rockafellar, Jie Sun. A New Approach in the Optimization of Exponential Queues; S.H. Xu. The Euclidean Facilities Location Problem; Guoliang Xue, Changyu Wang. Optimal Design of Large-Scale Opencut Coal Mine System; Dezhuang Yang. On the Strictly Complementary Slackness Relation in Linear Programming; Shuzhong Zhang. Analytical Properties of the Central Trajectory in Interior Point Methods; Gongyun Zhao,Jishan Zhu. TheApproximation of Fixed Points of Robust Mappings; Quan Zheng, Deming Zhuang.
Summary
Offers a collection of research papers in optimization and approximation that covers the research on optimization problems, including scheduling, location, assignment, linear and nonlinear programming problems as well as problems in molecular biology. This book focuses on algorithmic aspects of research work in optimization.
Product details
Assisted by | Ding-Zhu Du (Editor), Ding-Zhu Du (Editor), Du Ding-Zhu Du (Editor), Ding-Zh Du (Editor), Ding-Zhu Du (Editor), Jie Sun (Editor), Jie Sun (Editor), Sun Jie Sun (Editor), Sun (Editor), Sun (Editor), Jie Sun (Editor) |
Publisher | Springer Netherlands |
Languages | English |
Product format | Hardback |
Released | 23.11.2011 |
EAN | 9780792327851 |
ISBN | 978-0-7923-2785-1 |
No. of pages | 390 |
Weight | 1650 g |
Illustrations | XIV, 390 p. |
Series |
Nonconvex Optimization and Its Applications Nonconvex Optimization and Its Applications (closed) Water Science and Technology Nonconvex Optimization and Its Applications Nonconvex Optimization and Its Water Science and Technology |
Subject |
Natural sciences, medicine, IT, technology
> Mathematics
> Miscellaneous
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.