Sold out

Virtual Decomposition Control - Toward Hyper Degrees of Freedom Robots

English · Hardback

Description

Read more

Driven by the need to achieve superior control performances for robots with hyper degrees of freedom, the virtual decomposition control approach is thoroughly presented in this book. This approach uses subsystem (such as links and joints of a complex robot) dynamics to conduct control design, while guaranteeing the stability and convergence of the entire complex robot without compromising the rigorousness of the system analysis. The central concept of this approach is the definition of the virtual stability. The stability of the entire complex robot is mathematically equivalent to the virtual stability of every subsystem. This fact allows us to convert a large problem to a few simple problems with mathematical certainty.
This book comprises fourteen chapters. The first five chapters form the foundation of this approach. The remaining nine chapters are relatively independent. Starting from Chapter 6, each chapter deals with a particular type of systems including motor/transmission assemblies, hydraulic robots, coordinated multiple robots, space robots, humanoid robots, adaptive teleoperation, and modular robot manipulators. At the end, the extensions of this approach to distributed-parameter systems and to electrical circuits are given, paving the way for other applications to follow.
This book is intended for practitioners, researchers, and graduate students who have acquired fundamental knowledge on robotics and control systems and have been committed to achieving the best control performances on complex robotics systems and beyond.

List of contents

Virtual Decomposition Control Theory.- Mathematical Preliminaries.- Virtual Decomposition Control - A Two DOF Example.- Virtual Decomposition Control - General Formulation.- Virtual Decomposition Control Applications.- Control of Electrically Driven Robots.- Control of Motor/Transmission Assemblies.- Control of Hydraulic Robots.- Control of Coordinated Multiple Robot Manipulators.- Control of Space Robots.- Control of Humanoid Robots.- Control of Force-Reflected Bilateral Teleoperation.- Control of Modular Robot Manipulators.- Control of Flexible Link Robots.- Applications to Electrical Circuits.

Summary

Driven by the need to achieve superior control performances for robots with hyper degrees of freedom, the virtual decomposition control approach is thoroughly presented in this book. This approach uses subsystem (such as links and joints of a complex robot) dynamics to conduct control design, while guaranteeing the stability and convergence of the entire complex robot without compromising the rigorousness of the system analysis. The central concept of this approach is the definition of the virtual stability. The stability of the entire complex robot is mathematically equivalent to the virtual stability of every subsystem. This fact allows us to convert a large problem to a few simple problems with mathematical certainty.
This book comprises fourteen chapters. The first five chapters form the foundation of this approach. The remaining nine chapters are relatively independent. Starting from Chapter 6, each chapter deals with a particular type of systems including motor/transmission assemblies, hydraulic robots, coordinated multiple robots, space robots, humanoid robots, adaptive teleoperation, and modular robot manipulators. At the end, the extensions of this approach to distributed-parameter systems and to electrical circuits are given, paving the way for other applications to follow.
This book is intended for practitioners, researchers, and graduate students who have acquired fundamental knowledge on robotics and control systems and have been committed to achieving the best control performances on complex robotics systems and beyond.

Additional text

From the reviews:
“This book discusses for the first time about subsystem-based control of robots without compromising control performances, the proposed VDC approach using subsystems dynamics to conduct control computation while rigorously guaranteeing the stability of the entire robot without imposing additional approximations. … a very interesting monograph introducing the new theory of Virtual Decomposition Control (VDC), and applying it fruitfully to the control of various types of robots.” (Silvia Curteanu, Zentralblatt MATH, Vol. 1239, 2012)

Report

From the reviews:
"This book discusses for the first time about subsystem-based control of robots without compromising control performances, the proposed VDC approach using subsystems dynamics to conduct control computation while rigorously guaranteeing the stability of the entire robot without imposing additional approximations. ... a very interesting monograph introducing the new theory of Virtual Decomposition Control (VDC), and applying it fruitfully to the control of various types of robots." (Silvia Curteanu, Zentralblatt MATH, Vol. 1239, 2012)

Product details

Authors Wen-Hong Zhu
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 28.06.2011
 
EAN 9783642107238
ISBN 978-3-642-10723-8
No. of pages 448
Dimensions 162 mm x 237 mm x 39 mm
Weight 838 g
Illustrations XXV, 448 p. 43 illus.
Series Springer Tracts in Advanced Robotics
Springer Tracts in Advanced Robotics
Subjects Natural sciences, medicine, IT, technology > Technology > Structural and environmental engineering

B, Robotics, Artificial Intelligence, Automation, engineering, Electronic devices & materials, Control, Robotics, Mechatronics, Control, Robotics, Automation, Control engineering, Mechatronics, Robotics and Automation, Automatic control engineering

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.