Fr. 124.00

Group and Ring Theoretic Properties of Polycyclic Groups

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in algebra, for example in the theory of Noetherian rings. The first half of this book develops the standard group theoretic techniques for studying polycyclic groups and the basic properties of these groups. The second half then focuses specifically on the ring theoretic properties of polycyclic groups and their applications, often to purely group theoretic situations.
The book is intended to be a study manual for graduate students and researchers coming into contact with polycyclic groups, where the main lines of the subject can be learned from scratch. Thus it has been kept short and readable with a view that it can be read and worked through from cover to cover. At the end of each topic covered there is a description without proofs, but with full references, of further developments in the area. An extensive bibliography then concludes the book.

List of contents

Some Basic Group Theory.- The Basic Theory of Polycyclic Groups.- Some Ring Theory.- Soluble Linear Groups.- Further Group-Theoretic Properties of Polycyclic Groups.- Hypercentral Groups and Rings.- Groups Acting on Finitely Generated Commutative Rings.- Prime Ideals in Polycyclic Group Rings.- The Structure of Modules over Polycyclic Groups.- Semilinear and Skew Linear Groups.

Summary

Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in algebra, for example in the theory of Noetherian rings. The first half of this book develops the standard group theoretic techniques for studying polycyclic groups and the basic properties of these groups. The second half then focuses specifically on the ring theoretic properties of polycyclic groups and their applications, often to purely group theoretic situations.

The book is intended to be a study manual for graduate students and researchers coming into contact with polycyclic groups, where the main lines of the subject can be learned from scratch. Thus it has been kept short and readable with a view that it can be read and worked through from cover to cover. At the end of each topic covered there is a description without proofs, but with full references, of further developments in the area. An extensive bibliography then concludes the book.

Additional text

From the reviews:
“The book under review consists of 10 chapters and is devoted to the systematic study of polycyclic groups from the beginning in the late 1930’s up to now. … The book is written clearly, with a high scientific level. … It is quite accessible to research workers not only in the area of group theory, but also in other areas, who find themselves, involved with polycyclic groups. The Bibliography is rich and reflects the development of the theory from very early time up to now.” (Bui Xuan Hai, Zentralblatt MATH, Vol. 1206, 2011)

Report

From the reviews:
"The book under review consists of 10 chapters and is devoted to the systematic study of polycyclic groups from the beginning in the late 1930's up to now. ... The book is written clearly, with a high scientific level. ... It is quite accessible to research workers not only in the area of group theory, but also in other areas, who find themselves, involved with polycyclic groups. The Bibliography is rich and reflects the development of the theory from very early time up to now." (Bui Xuan Hai, Zentralblatt MATH, Vol. 1206, 2011)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.