Fr. 243.00

ELECTRICAL ACTUATORS IDENTIFICATION ANDO

English · Paperback / Softback

Shipping usually within 3 to 5 weeks

Description

Read more

Informationen zum Autor Bernard de Fornel works for ENS Cachan, France. Jean-Paul Louis works for ENSEEIHT, Toulouse, France. Klappentext This helpful resource covers a large range of information regarding electrical actuators. In particular, robustness, a very problematic issue, is fully explored in a dedicated chapter. The text also deals with he estimate of non-measurable mechanical variables by examining the estimate of load moment, then observation of the positioning of a command without mechanical sensor. Finally, it examines the conditions needed to measure variables and real implementation of numerical algorithms. This is a key working resource for electrical engineers. Zusammenfassung This helpful resource covers a large range of information regarding electrical actuators. In particular, robustness, a very problematic issue, is fully explored in a dedicated chapter. Inhaltsverzeichnis Introduction xiii Bernard DE FORNEL and Jean-Paul LOUIS PART I. MEASURES AND IDENTIFICATIONS 1 Chapter 1. Identification of Induction Motor in Sinusoidal Mode 3 Edouard LAROCHE and Jean-Paul LOUIS 1.1. Introduction 3 1.2. The models 4 1.3. Traditional methods from a limited number of measurements 17 1.4. Estimation by minimization of a criteria based on admittance 24 1.5. Linear estimation 36 1.6. Conclusion 44 1.7. Appendix 45 1.8. Bibliography 47 Chapter 2. Modeling and Parameter Determination of the Saturated Synchronous Machine 49 Ernest MATAGNE and Emmanuel DE JAEGER 2.1. Modeling of the synchronous machine: general theory 49 2.2. Classical models and tests 83 2.3. Advanced models: the synchronous machine in saturated mode 100 2.4. Bibliography 116 Chapter 3. Real-Time Estimation of the Induction Machine Parameters 119 Luc LORON 3.1. Introduction 119 3.2. Objectives of parameter estimation 121 3.3. Fundamental problems 124 3.4. Least square methods 138 3.5. Extended Kalman filter 146 3.6. Extended Luenberger observer 158 3.7. Conclusion 168 3.8. Appendix: machine characteristics 169 3.9. Bibliography 169 PART II. OBSERVER EXAMPLES 175 Chapter 4. Linear Estimators and Observers for the Induction Machine (IM) 177 Maria PIETRZAK-DAVID! Bernard DE FORNEL and Alain BOUSCAYROL 4.1. Introduction 177 4.2. Estimation models for the induction machine 178 4.3. Flux estimation 186 4.4. Flux observation190 4.5. Linear stochastic observers--Kalman--Bucy filters 198 4.6. Separate estimation and observation structures of the rotation speed 210 4.7. Adaptive observer 223 4.8. Variable structure mechanical observer (VSMO) 234 4.9. Conclusion 248 4.10. Bibliography 249 Chapter 5. Decomposition of a Determinist Flux Observer for the Induction Machine: Cartesian and Reduced Order Structures 251 Alain BOUSCAYROL! Maria PIETRZAK-DAVID and Bernard DE FORNEL 5.1. Introduction 251 5.2. Estimation models for the induction machine 252 5.3. Cartesian observers 260 5.4. Reduced order observers 271 5.5. Conclusion on Cartesian and reduced order observers 281 5.6. Appendix: parameters of the study induction machine 281 5.7. Bibliography 281 Chapter 6. Observer Gain Determination Based on Parameter Sensitivity Analysis 285 Benoit ROBYNS 6.1. Introduction 285 6.2. Flux observers 286 6.3. Analysis method of the parametric sensitivity 293 6.4. Choice of observer gains 298 6.5. Reduced order flux observer 301 6.6. Full order flux observer 310 6.7. Conclusion 316 6.8. Appendix: parameters of the squirrel-cage induction machine 319 6.9. Bibliography 319 Chapter 7. Observation of the Load Torque of an Electrical Machine 321 Maurice FADEL and Bernard DE FORNEL 7.1. Introduction 321 7.2. Characterization of a load torque relative to an axis of rotation 322 7.3. Modal control of the actuator with load torque observation 330 7.4. Observation of load torque 342 7.5. Robustness of control law by state feedback with observation of the...

List of contents

Introduction xiii
Bernard DE FORNEL and Jean-Paul LOUIS

PART I. MEASURES AND IDENTIFICATIONS 1

Chapter 1. Identification of Induction Motor in Sinusoidal Mode 3
Edouard LAROCHE and Jean-Paul LOUIS

1.1. Introduction 3

1.2. The models 4

1.3. Traditional methods from a limited number of measurements 17

1.4. Estimation by minimization of a criteria based on admittance 24

1.5. Linear estimation 36

1.6. Conclusion 44

1.7. Appendix 45

1.8. Bibliography 47

Chapter 2. Modeling and Parameter Determination of the Saturated Synchronous Machine 49
Ernest MATAGNE and Emmanuel DE JAEGER

2.1. Modeling of the synchronous machine: general theory 49

2.2. Classical models and tests 83

2.3. Advanced models: the synchronous machine in saturated mode 100

2.4. Bibliography 116

Chapter 3. Real-Time Estimation of the Induction Machine Parameters 119
Luc LORON

3.1. Introduction 119

3.2. Objectives of parameter estimation 121

3.3. Fundamental problems 124

3.4. Least square methods 138

3.5. Extended Kalman filter 146

3.6. Extended Luenberger observer 158

3.7. Conclusion 168

3.8. Appendix: machine characteristics 169

3.9. Bibliography 169

PART II. OBSERVER EXAMPLES 175

Chapter 4. Linear Estimators and Observers for the Induction Machine (IM) 177
Maria PIETRZAK-DAVID, Bernard DE FORNEL and Alain BOUSCAYROL

4.1. Introduction 177

4.2. Estimation models for the induction machine 178

4.3. Flux estimation 186

4.4. Flux observation190

4.5. Linear stochastic observers-Kalman-Bucy filters 198

4.6. Separate estimation and observation structures of the rotation speed 210

4.7. Adaptive observer 223

4.8. Variable structure mechanical observer (VSMO) 234

4.9. Conclusion 248

4.10. Bibliography 249

Chapter 5. Decomposition of a Determinist Flux Observer for the Induction Machine: Cartesian and Reduced Order Structures 251
Alain BOUSCAYROL, Maria PIETRZAK-DAVID and Bernard DE FORNEL

5.1. Introduction 251

5.2. Estimation models for the induction machine 252

5.3. Cartesian observers 260

5.4. Reduced order observers 271

5.5. Conclusion on Cartesian and reduced order observers 281

5.6. Appendix: parameters of the study induction machine 281

5.7. Bibliography 281

Chapter 6. Observer Gain Determination Based on Parameter Sensitivity Analysis 285
Benoît ROBYNS

6.1. Introduction 285

6.2. Flux observers 286

6.3. Analysis method of the parametric sensitivity 293

6.4. Choice of observer gains 298

6.5. Reduced order flux observer 301

6.6. Full order flux observer 310

6.7. Conclusion 316

6.8. Appendix: parameters of the squirrel-cage induction machine 319

6.9. Bibliography 319

Chapter 7. Observation of the Load Torque of an Electrical Machine 321
Maurice FADEL and Bernard DE FORNEL

7.1. Introduction 321

7.2. Characterization of a load torque relative to an axis of rotation 322

7.3. Modal control of the actuator with load torque observation 330

7.4. Observation of load torque 342

7.5. Robustness of control law by state feedback with observation of the resistant torque 377

7.6. Experimental results 386

7.7. Conclusion 399

7.8. Bibliography 401

Chapter 8. Observation of the Rotor Position to Control the Synchronous Machine without Mechanical Sensor 405
Stéphane CAUX and Maurice FADEL

8.1. State of the art 405

8.2. Reconstruction of the low-resolution position 409

8.3. Exact reconstruction by redundant observer 414

8.4. Exact reconstruction by Kalman filter 436

8.5. Comparison of reconstructions by Kalman filter or analytical redundancy observer 451

8.6. Bibliography 458

List of Authors 461

Index 463

About the author










Bernard de Fornel works for ENS Cachan, France. Jean-Paul Louis works for ENSEEIHT, Toulouse, France.

Summary

This helpful resource covers a large range of information regarding electrical actuators. In particular, robustness, a very problematic issue, is fully explored in a dedicated chapter.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.