Fr. 70.00

Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Stochastic programming provides a framework for modelling, analyzing, and solving optimization problems with some parameters being not known up to a probability distribution. Such problems arise in a variety of applications, such as inventory control, financial planning and portfolio optimization, airline revenue management, scheduling and operation of power systems, and supply chain management.

Christian Küchler studies various aspects of the stability of stochastic optimization problems as well as approximation and decomposition methods in stochastic programming. In particular, the author presents an extension of the Nested Benders decomposition algorithm related to the concept of recombining scenario trees. The approach combines the concept of cut sharing with a specific aggregation procedure and prevents an exponentially growing number of subproblem evaluations. Convergence results and numerical properties are discussed.

List of contents

Stability of Multistage Stochastic Programs.- Recombining Trees for Multistage Stochastic Programs.- Scenario Reduction with Respect to Discrepancy Distances.

About the author

Dr. Christian Küchler completed his doctoral thesis at the Humboldt University, Berlin. He currently works as a quantitative analyst at Landesbank Berlin AG.

Summary

Stochastic programming provides a framework for modelling, analyzing, and solving optimization problems with some parameters being not known up to a probability distribution. Such problems arise in a variety of applications, such as inventory control, financial planning and portfolio optimization, airline revenue management, scheduling and operation of power systems, and supply chain management.

Christian Küchler studies various aspects of the stability of stochastic optimization problems as well as approximation and decomposition methods in stochastic programming. In particular, the author presents an extension of the Nested Benders decomposition algorithm related to the concept of recombining scenario trees. The approach combines the concept of cut sharing with a specific aggregation procedure and prevents an exponentially growing number of subproblem evaluations. Convergence results and numerical properties are discussed.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.