Fr. 50.90

Geometriekalküle

German · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Wie kann man geometrische Objekte und Operationen so darstellen, dass sie durch möglichst einfache algebraische Manipulationen verarbeitet werden können? Dies ist die Leitfrage dieses Buches, welche im Verlauf von insgesamt 12 Kapiteln von verschiedenen Seiten beleuchtet wird. Unter diesem Blickwinkel werden Einführungen in projektive Geometrie, geometrische Invariantentheorie, Euklidische Geometrie (unter besonderer Berücksichtigung komplexer Zahlen) Möbiusgeometrie, und Lie'sche Kreisgeometrie gegeben. Hierbei liegt der Schwerpunkt auf Eleganz der Methoden, welche nicht selten automatisch zu eleganten algorithmischen Ansätzen führen. Für den Leser stellt das Buch eine Brücke vom Grundwissen in der Linearen Algebra zu modernen (und klassischen) Ansätzen der Geometrie dar. Neben zahlreichen Übungsaufgaben, Abbildungen und im Internet verfügbaren interaktiven Visualisierungen wird jedes Kapitel durch einen "Exkurs" ergänzt, der Einblicke in Anwendungen oder weiterführende Themen gibt. Das Buch richtet sich an Studierende und Dozenten der Mathematik, Informatik und Physik ab dem dritten Semester.

List of contents

1 Homogene Koordinaten der Ebene.- 2 Transformationen.- 3 Dualität.- 4 Projektive Geometrie auf Geraden.- 5 Kegelschnitte.- 6 Komplexe Zahlen und Geometrie.- 7 Euklidische Geometrie.- 8 Der projektive Raum.- 9 Determinanten.- 10 Kreisgeometrie.- 11 Einige Matrizengruppen.- 12 Drehungen und Quaternionen.- Leseempfehlungen.- Bildnachweis.- Index.

About the author

Jürgen Richter-Geberts ist Leiter des Lehrstuhls Geometrie und Visualisierung am Zentrum Mathematik der TU München. Er ist Initiator der Mathematikausstellung "ix-quadrat" und des Web Portals "Mathe-Vital".

Summary

Wie kann man geometrische Objekte und Operationen so darstellen, dass sie durch möglichst einfache algebraische Manipulationen verarbeitet werden können? Dies ist die Leitfrage dieses Buches, welche im Verlauf von insgesamt 12 Kapiteln von verschiedenen Seiten beleuchtet wird. Unter diesem Blickwinkel werden Einführungen in projektive Geometrie, geometrische Invariantentheorie, Euklidische Geometrie (unter besonderer Berücksichtigung komplexer Zahlen) Möbiusgeometrie, und Lie‘sche Kreisgeometrie gegeben. Hierbei liegt der Schwerpunkt auf Eleganz der Methoden, welche nicht selten automatisch zu eleganten algorithmischen Ansätzen führen. Für den Leser stellt das Buch eine Brücke vom Grundwissen in der Linearen Algebra zu modernen (und klassischen) Ansätzen der Geometrie dar. Neben zahlreichen Übungsaufgaben, Abbildungen und im Internet verfügbaren interaktiven Visualisierungen wird jedes Kapitel durch einen „Exkurs" ergänzt, der Einblicke in Anwendungen oder weiterführende Themen gibt. Das Buch richtet sich an Studierende und Dozenten der Mathematik, Informatik und Physik ab dem dritten Semester.

Report

From the reviews: "The aim of the book is a very pragmatic introduction to the classic and modern approaches to geometry. ... By using determinants in ... all formulas the authors achieve a very unified presentation. The book addresses students of mathematics, informatics and physics after their first year at university and, of course, docents. ... The book contains numerous excellent illustrations and finishes with a survey of references being useful for deepening the presented topics and an index." (Rolf Riesinger, Zentralblatt MATH, February, 2010)

Product details

Authors Thorsten Orendt, Jürge Richter-Gebert, Jürgen Richter-Gebert
Publisher Springer, Berlin
 
Languages German
Product format Paperback / Softback
Released 02.10.2009
 
EAN 9783642025297
ISBN 978-3-642-02529-7
No. of pages 224
Dimensions 156 mm x 9 mm x 234 mm
Weight 414 g
Illustrations XI, 224 S.
Series Springer-Lehrbuch
Springer-Lehrbuch
Subjects Natural sciences, medicine, IT, technology > Mathematics > Geometry

Komplexe Zahlen, Algebra, Koordinaten, Geometrie, Visualisierung, A, Matrizen, geometry, Projektive Geometrie, Mathematics and Statistics, geometrische Invariantentheorie

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.