Fr. 179.00

The Higher Infinite - Large Cardinals in Set Theory from Their Beginnings

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The higher in?nite refers to the lofty reaches of the in?nite cardinalities of set t- ory as charted out by large cardinal hypotheses. These hypotheses posit cardinals that prescribe their own transcendence over smaller cardinals and provide a sup- structure for the analysis of strong propositions. As such they are the rightful heirs to the two main legacies of Georg Cantor, founder of set theory: the extension of number into the in?nite and the investigation of de?nable sets of reals. The investigation of large cardinal hypotheses is indeed a mainstream of modern set theory, and they have been found to play a crucial role in the study of de?nable sets of reals, in particular their Lebesgue measurability. Although formulated at various stages in the development of set theory and with different incentives, the hypotheses were found to form a linear hierarchy reaching up to an inconsistent extension of motivating concepts. All known set-theoretic propositions have been gauged in this hierarchy in terms of consistency strength, and the emerging str- ture of implications provides a remarkably rich, detailed and coherent picture of the strongest propositions of mathematics as embedded in set theory. The ?rst of a projected multi-volume series, this text provides a comp- hensive account of the theory of large cardinals from its beginnings through the developments of the early 1970's and several of the direct outgrowths leading to the frontiers of current research.

List of contents

Preliminaries.- Beginnings.- Partition Properties.- Forcing and Sets of Reals.- Aspects of Measurability.- Strong Hypotheses.- Determinacy.

Product details

Authors Akihiro Kanamori
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 10.12.2008
 
EAN 9783540888666
ISBN 978-3-540-88866-6
No. of pages 538
Dimensions 157 mm x 233 mm x 31 mm
Weight 830 g
Illustrations XXII, 538 p.
Series Springer Monographs in Mathematics
Springer Monographs in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Basic principles

B, mathematische Grundlagen, Topologie, Mathematics and Statistics, Topology, Mathematical logic, Mathematical Logic and Foundations, Set theory, relative consistency results

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.