Fr. 86.50

Topological Degree Approach to Bifurcation Problems

English · Hardback

Shipping usually within 3 to 5 weeks (title will be specially ordered)

Description

Read more

1. 1 Preface Many phenomena from physics, biology, chemistry and economics are modeled by di?erential equations with parameters. When a nonlinear equation is est- lished, its behavior/dynamics should be understood. In general, it is impossible to ?nd a complete dynamics of a nonlinear di?erential equation. Hence at least, either periodic or irregular/chaotic solutions are tried to be shown. So a pr- erty of a desired solution of a nonlinear equation is given as a parameterized boundary value problem. Consequently, the task is transformed to a solvability of an abstract nonlinear equation with parameters on a certain functional space. When a family of solutions of the abstract equation is known for some para- ters, the persistence or bifurcations of solutions from that family is studied as parameters are changing. There are several approaches to handle such nonl- ear bifurcation problems. One of them is a topological degree method, which is rather powerful in cases when nonlinearities are not enough smooth. The aim of this book is to present several original bifurcation results achieved by the author using the topological degree theory. The scope of the results is rather broad from showing periodic and chaotic behavior of non-smooth mechanical systems through the existence of traveling waves for ordinary di?erential eq- tions on in?nite lattices up to study periodic oscillations of undamped abstract waveequationsonHilbertspaceswithapplicationstononlinearbeamandstring partial di?erential equations. 1.

List of contents

Theoretical Background.- Bifurcation of Periodic Solutions.- Bifurcation of Chaotic Solutions.- Topological Transversality.- Traveling Waves on Lattices.- Periodic Oscillations of Wave Equations.- Topological Degree for Wave Equations.

Summary

1. 1 Preface Many phenomena from physics, biology, chemistry and economics are modeled by di?erential equations with parameters. When a nonlinear equation is est- lished, its behavior/dynamics should be understood. In general, it is impossible to ?nd a complete dynamics of a nonlinear di?erential equation. Hence at least, either periodic or irregular/chaotic solutions are tried to be shown. So a pr- erty of a desired solution of a nonlinear equation is given as a parameterized boundary value problem. Consequently, the task is transformed to a solvability of an abstract nonlinear equation with parameters on a certain functional space. When a family of solutions of the abstract equation is known for some para- ters, the persistence or bifurcations of solutions from that family is studied as parameters are changing. There are several approaches to handle such nonl- ear bifurcation problems. One of them is a topological degree method, which is rather powerful in cases when nonlinearities are not enough smooth. The aim of this book is to present several original bifurcation results achieved by the author using the topological degree theory. The scope of the results is rather broad from showing periodic and chaotic behavior of non-smooth mechanical systems through the existence of traveling waves for ordinary di?erential eq- tions on in?nite lattices up to study periodic oscillations of undamped abstract waveequationsonHilbertspaceswithapplicationstononlinearbeamandstring partial di?erential equations. 1.

Additional text

From the book reviews:
“This excellent and well-organized book is based on recently published papers of the author using topological degree methods. … The book should not only be of interest to mathematicians but to physicists and theoretically inclined engineers involved in bifurcation theory and its applications to dynamical systems and nonlinear analysis.” (László Hatvani, Acta Scientiarum Mathematicarum (Szeged), Vol. 75 (3-4), 2009)

Report

From the book reviews:
"This excellent and well-organized book is based on recently published papers of the author using topological degree methods. ... The book should not only be of interest to mathematicians but to physicists and theoretically inclined engineers involved in bifurcation theory and its applications to dynamical systems and nonlinear analysis." (László Hatvani, Acta Scientiarum Mathematicarum (Szeged), Vol. 75 (3-4), 2009)

Product details

Authors Michal Fe Kan, Fe&, Michal Fe&269;kan, Michal Feckan, Michal Fečkan
Publisher Springer Netherlands
 
Languages English
Product format Hardback
Released 28.08.2008
 
EAN 9781402087233
ISBN 978-1-4020-8723-3
No. of pages 261
Dimensions 172 mm x 243 mm x 20 mm
Weight 524 g
Illustrations IX, 261 p. 17 illus.
Series Topological Fixed Point Theory and Its Applications
Topological Fixed Point Theory
Topological Fixed Point Theory and Its Applications
Topological Fixed Point Theory
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.