Fr. 49.50

Processus Aleatoires a Deux Indices - Colloque E.N.S.T. - C.N.E.T., Paris 1980

French, English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

List of contents

Theorie elementaire des processus a deux indices.- Limites "quadrantales" des martingales.- Convergence and regularity of strong submartingales.- Discontinuites des processus croissants et martingales a variation integrable.- Sur les discontinuites d'un processus cad-lag a deux indices.- Regularite des martingales a deux indices et inegalites de normes.- Inegalites de Burkholder pour martingales indexees par ? × ?.- Martingales a variation independante du chemin.- Some remarks on integration with respect to weak martingales.- On the decomposition and integration of two-parameter stochastic processes.- Optional increasing paths.- The conditional independence property in filtrations associated to stopping lines.- Identification et estimation de semi-martingales representables par rapport a un brownien a un indice double.- Stochastic calculus for a two parameter jump process.- Une propriete markovienne et diffusions associees.

Product details

Assisted by H. Korezlioglu (Editor), G Mazziotto (Editor), G. Mazziotto (Editor), J Szpirglas (Editor), J. Szpirglas (Editor)
Publisher Springer, Berlin
 
Languages French, English
Product format Paperback / Softback
Released 26.06.2009
 
EAN 9783540108320
ISBN 978-3-540-10832-0
No. of pages 282
Weight 603 g
Illustrations VI, 282 p.
Series Lecture Notes in Mathematics
Lecture Notes in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.