Share
Fr. 261.00
Zhao-We Wang, Zhao-Wen Wang
Molecular Mechanisms of Neurotransmitter Release
English · Hardback
Shipping usually within 6 to 7 weeks
Description
Neurons in the nervous system organize into complex networks and their functions are precisely controlled. The most important means for neurons to communicate with each other is transmission through chemical synapses, where the release of neurotransmitters by the presynaptic nerve terminal of one neuron influences the function of a second neuron. Since the discovery of chemical neurotransmission by Otto Loewi in the 1920s, great progress has been made in our understanding of mol- ular mechanisms of neurotransmitter release. The last decade has seen an explosion of knowledge in this field. The aim of Molecular Mechanisms of Neurotransmitter Release is to provide up-to-date, in-depth coverage of essentially all major mole- lar mechanisms of neurotransmitter release. The contributors have made great efforts to write concisely but with sufficient background information, and to use figures/diagrams to present clearly key concepts or experiments. It is hoped that this book may serve as a learning tool for neuroscience students, a solid reference for neuroscientists, and a source of knowledge for people who have a general interest in neuroscience. I was fortunate to be able to gather contributions from a group of outstanding scientists. I thank them for their efforts. In particular, I want to thank Dr. Erik Jorgensen who offered valuable suggestions about the book in addition to contrib- ing an excellent chapter. I thank US National Science Foundation and National Institute of Health for their supports.
List of contents
1. The Architecture of the Presynaptic Release SiteR. Grace Zhai2. Multiple modes of fusion and retrieval at the calyx of Held synapseLiming He, Benjamin McNeil, and Ling-Gang Wu3. Roles of SNARE proteins in synaptic vesicle fusionMark T. Palfreyman and Erik M. Jorgensen4. Roles and sources of calcium in synaptic exocytosisZhao-Wen Wang, Bojun Chen, Qian Ge5. Regulation of presynaptic calcium channelsAllen W. Chan and Elise F. Stanley6. Synaptotagmin: transducing Ca2+-binding to vesicle fusionCarin Loewen and Noreen Reist7. Functional interactions between the SNARE regulators UNC-13, tomosyn and UNC-18Robby M. Weimer and Janet E. Richmond8. Roles of the ELKS/CAST family and SAD kinase in Neurotransmitter ReleaseToshihisa Ohtsuka and Yoshimi Takai9. The role of potassium channels in the regulation of neurotransmitter release.Laurence O. Trussell and Michael T. Roberts10. Modulation of neurotransmitter release and presynaptic plasticity by protein phosphorylationZu-Hang Sheng11. Synaptic Vesicle EndocytosisLiesbet Smitz and Patrik Verstreken12. Lipids and secretory vesicle exocytosisShona L. Osborne and Frederic A. Meunier13. Neurotransmitter reuptake and synaptic vesicle refillingRichard J. Reimer*, Kimberly A. Zaia, and Hiroaki Tani14. Regulation of neurotransmitter release by presynaptic receptorsMatthew Frerking, and Joyce Wondolowski15. Trans-synaptic regulation of presynaptic release machinery in central synapses by cell adhesion moleculesKensuke Futai and Yasunori Hayashi16. Differential regulation of small clear vesicles and large dense-core vesiclesTao Xu and Pingyong Xu
Summary
Neurons in the nervous system organize into complex networks and their functions are precisely controlled. The most important means for neurons to communicate with each other is transmission through chemical synapses, where the release of neurotransmitters by the presynaptic nerve terminal of one neuron influences the function of a second neuron. Since the discovery of chemical neurotransmission by Otto Loewi in the 1920s, great progress has been made in our understanding of mol- ular mechanisms of neurotransmitter release. The last decade has seen an explosion of knowledge in this field. The aim of Molecular Mechanisms of Neurotransmitter Release is to provide up-to-date, in-depth coverage of essentially all major mole- lar mechanisms of neurotransmitter release. The contributors have made great efforts to write concisely but with sufficient background information, and to use figures/diagrams to present clearly key concepts or experiments. It is hoped that this book may serve as a learning tool for neuroscience students, a solid reference for neuroscientists, and a source of knowledge for people who have a general interest in neuroscience. I was fortunate to be able to gather contributions from a group of outstanding scientists. I thank them for their efforts. In particular, I want to thank Dr. Erik Jorgensen who offered valuable suggestions about the book in addition to contrib- ing an excellent chapter. I thank US National Science Foundation and National Institute of Health for their supports.
Additional text
From the reviews:
“Molecular Mechanisms of Neurotransmitter Release edited by Zhao Wen Wang provides the reader with a comprehensive overview of the complex interactions occurring in pre synaptic neurons involved with chemical communication. … High quality illustrations a large number of which are in full color, support the information in the text … . This book is recommended for the researcher and student of neuroscience … . Neurology residents undergoing specialty training in neuromuscular disease will find this book to be an invaluable resource.” (Joseph Vito Russo, Medical Science Books, April, 2010)
Report
From the reviews: "Molecular Mechanisms of Neurotransmitter Release edited by Zhao Wen Wang provides the reader with a comprehensive overview of the complex interactions occurring in pre synaptic neurons involved with chemical communication. ... High quality illustrations a large number of which are in full color, support the information in the text ... . This book is recommended for the researcher and student of neuroscience ... . Neurology residents undergoing specialty training in neuromuscular disease will find this book to be an invaluable resource." (Joseph Vito Russo, Medical Science Books, April, 2010)
Product details
Assisted by | Zhao-We Wang (Editor), Zhao-Wen Wang (Editor) |
Publisher | Springer, Berlin |
Languages | English |
Product format | Hardback |
Released | 19.11.2010 |
EAN | 9781934115381 |
ISBN | 978-1-934115-38-1 |
No. of pages | 347 |
Dimensions | 161 mm x 240 mm x 25 mm |
Weight | 674 g |
Illustrations | XIII, 347 p. |
Series |
Contemporary Neuroscience Contemporary Neuroscience Advances in Neurobiology |
Subjects |
Natural sciences, medicine, IT, technology
> Medicine
> Non-clinical medicine
B, Neurology, HUMAN PHYSIOLOGY, PHYSIOLOGY, Neuroscience, Neurology & clinical neurophysiology, Neurosciences, Biomedical and Life Sciences, Cellular biology (cytology), Zoology, Cell Biology, Neurobiology |
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.