Fr. 70.00

Homology of Linear Groups

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Daniel Quillen's definition of the higher algebraic K-groups of a ring emphasized the importance of computing the homology of groups of matrices. This text traces the development of this theory from Quillen's fundamental calculation of the cohomology of GLn (Fq). The stability theorems and low-dimensional results of A. Suslin, W. van der Kallen and others are presented as well as recent results for rank one groups. A chapter on the Friedlander-Milnor-conjecture concerning the homology of algebraic groups made discrete is also included. This marks the first time that these results have been collected in a single volume. The book should prove useful to graduate students and researchers in K-theory, group cohomology, algebraic geometry and topology.

List of contents

1. Topological Methods.- 1.1. Finite Fields.- 1.2. Quillen's Conjecture.- 1.3. Étale homotopy theory.- 1.4. Analytical Methods.- 1.5. Unstable Calculations.- 1.6. Congruence Subgroups.- Exercises.- 2. Stability.- 2.1. van der Kallen's Theorem.- 2.2. Stability for rings with many units.- 2.3. Local rings and Milnor K-theory.- 2.4. Auxiliary stability results.- 2.5. Stability via Homotopy.- 2.6. The Rank Conjecture.- Exercises.- 3. Low-dimensional Results.- 3.1. Scissors Congruence.- 3.2. The Bloch Group.- 3.3. Extensions and Generalizations.- 3.4. Invariants of hyperbolic manifolds.- Exercises.- 4. Rank One Groups.- 4.1. SL2(?[1/p]).- 4.2. The Bruhat-Tits Tree.- 4.3. SL2(k[t]).- 4.4. SL2(k[t, t?1]).- 4.5. Curves of Higher Genus.- 4.6. Groups of Higher Rank.- Exercises.- 5. The Friedlander-Milnor Conjecture.- 5.1. Lie Groups.- 5.2. Groups over Algebraically Closed Fields.- 5.3. Rigidity.- 5.4. Stable Results.- 5.5. H1, H2, and H3.- Exercises.- Appendix A. Homology of Discrete Groups.- A.1. Basic Concepts.- A.2. Spectral Sequences.- B.1. Classifying Spaces.- Appendix C. Étale Cohomology.- C.1. Étale Morphisms and Henselian Rings.- C.2. Étale Cohomology.- C.3. Simplicial Schemes.

Summary

Daniel Quillen's definition of the higher algebraic K-groups of a ring emphasized the importance of computing the homology of groups of matrices. This text traces the development of this theory from Quillen's fundamental calculation of the cohomology of GLn (Fq). The stability theorems and low-dimensional results of A. Suslin, W. van der Kallen and others are presented as well as recent results for rank one groups. A chapter on the Friedlander-Milnor-conjecture concerning the homology of algebraic groups made discrete is also included. This marks the first time that these results have been collected in a single volume. The book should prove useful to graduate students and researchers in K-theory, group cohomology, algebraic geometry and topology.

Additional text

"A book for graduates and researchers in K-theory, cohomology, algebraic geometry and topology. The theme is the development of the computing of the homology of the groups of matrices from Daniel Quillen’s definitions of the higher algebraic K-groups. Stability theorems, low-dimensional results and the Friedlander-Milnor conjecture are discussed in this monograph."
–Aslib Book Guide

"This marks the first time that many of these results have been collected in a single volume…"
–Mathematical Reviews

Report

"A book for graduates and researchers in K-theory, cohomology, algebraic geometry and topology. The theme is the development of the computing of the homology of the groups of matrices from Daniel Quillen's definitions of the higher algebraic K-groups. Stability theorems, low-dimensional results and the Friedlander-Milnor conjecture are discussed in this monograph."
-Aslib Book Guide

"This marks the first time that many of these results have been collected in a single volume..."
-Mathematical Reviews

Product details

Authors Kevin P Knudson, Kevin P. Knudson
Publisher Birkhäuser
 
Languages English
Product format Hardback
Released 01.01.2000
 
EAN 9783764364151
ISBN 978-3-7643-6415-1
No. of pages 192
Weight 1040 g
Series Progress in Mathematics
Progress in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Geometry

Algebra, C, Homology, Mathematics and Statistics, Algebraic Topology, homotopy theory, cohomology of groups

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.