Fr. 223.20

Ramanujan's Lost Notebook - Part II

English · Hardback

Shipping usually within 3 to 5 weeks (title will be specially ordered)

Description

Read more

This is the second of approximately four volumes that the authors plan to write in their examination of all the claims made by S. Ramanujan in The Lost Notebook and Other Unpublished Papers. This volume, published by Narosa in 1988, contains the "Lost Notebook," which was discovered by the ?rst author in the spring of 1976 at the library of Trinity College, Cambridge. Also included in this publication are other partial manuscripts, fragments, and letters that Ramanujan wrote to G. H. Hardy from nursing homes during 1917-1919. The authors have attempted to organize this disparate material in chapters. This second volume contains 16 chapters comprising 314 entries, including some duplications and examples, with chapter totals ranging from a high of ?fty-four entries in Chapter 1 to a low of two entries in Chapter 12. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Introduction . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 The Heine Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 2 Heine's Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 3 Ramanujan's Proof of the q-Gauss Summation Theorem . . . . . 10 1. 4 Corollaries of (1. 2. 1) and (1. 2. 5) . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 5 Corollaries of (1. 2. 6) and (1. 2. 7) . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. 6 Corollaries of (1. 2. 8), (1. 2. 9), and (1. 2. 10) . . . . . . . . . . . . . . . . . . 24 1. 7 Corollaries of Section 1. 2 and Auxiliary Results . . . . . . . . . . . . . 27 2 The Sears-Thomae Transformation . . . . . . . . . . . . . . . . . . . . . . . . 45 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 45 2. 2 Direct Corollaries of (2. 1. 1) and (2. 1. 3) . . . . . . . . . . . . . . . . . . . . 45 2. 3 Extended Corollaries of (2. 1. 1) and (2. 1. 3) . . . . . . . . . . . . . . . . .

List of contents

Preface.- Introduction.- The Heine Transformation.- The Sears-Thomae Transformation.- Bilateral Series.- Well-poised Series.- Bailey's Lemma and Theta Expansions.- Partial Theta Functions.- Special Identities.- Theta Function Identities.- Ramanujan's Cubic Class Invariant.- Miscellaneous Results on Elliptic Functions and Theta Functions.- Formulas for the Power Series Cofficients of Certain Quotients of Eisenstein Series.- Letters From Matlock House.- Eisenstein Series and Modular Equations.- Series Representable in Terms of Eisenstein Series.- Eisenstein Series and Approximations to p.- Miscellaneous Results on Eisenstein Series.- Location Guide.- Provenance.- References.-

Summary

This is the second of approximately four volumes that the authors plan to write in their examination of all the claims made by S. Ramanujan in The Lost Notebook and Other Unpublished Papers. This volume, published by Narosa in 1988, contains the “Lost Notebook,” which was discovered by the ?rst author in the spring of 1976 at the library of Trinity College, Cambridge. Also included in this publication are other partial manuscripts, fragments, and letters that Ramanujan wrote to G. H. Hardy from nursing homes during 1917–1919. The authors have attempted to organize this disparate material in chapters. This second volume contains 16 chapters comprising 314 entries, including some duplications and examples, with chapter totals ranging from a high of ?fty-four entries in Chapter 1 to a low of two entries in Chapter 12. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Introduction . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 The Heine Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 2 Heine’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 3 Ramanujan’s Proof of the q-Gauss Summation Theorem . . . . . 10 1. 4 Corollaries of (1. 2. 1) and (1. 2. 5) . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 5 Corollaries of (1. 2. 6) and (1. 2. 7) . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. 6 Corollaries of (1. 2. 8), (1. 2. 9), and (1. 2. 10) . . . . . . . . . . . . . . . . . . 24 1. 7 Corollaries of Section 1. 2 and Auxiliary Results . . . . . . . . . . . . . 27 2 The Sears–Thomae Transformation . . . . . . . . . . . . . . . . . . . . . . . . 45 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 45 2. 2 Direct Corollaries of (2. 1. 1) and (2. 1. 3) . . . . . . . . . . . . . . . . . . . . 45 2. 3 Extended Corollaries of (2. 1. 1) and (2. 1. 3) . . . . . . . . . . . . . . . . .

Additional text

From the reviews: “This volume contains 16 chapters comprising 314 entries. The material is arranged thematically with the main topics being some of Ramanujan’s favorites q series theta functions … . the authors treatment is extremely thorough. Each chapter contains an introduction with appropriate background. References to all other known proofs of the entries are provided. … Fans of Ramanujan’s mathematics are sure to be delighted by this book. … Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come.” (Jeremy Lovejoy, Mathematical Reviews, Issue 2010 f)

Report

From the reviews: "This volume contains 16 chapters comprising 314 entries. The material is arranged thematically with the main topics being some of Ramanujan's favorites q series theta functions ... . the authors treatment is extremely thorough. Each chapter contains an introduction with appropriate background. References to all other known proofs of the entries are provided. ... Fans of Ramanujan's mathematics are sure to be delighted by this book. ... Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come." (Jeremy Lovejoy, Mathematical Reviews, Issue 2010 f)

Product details

Authors George Andrews, George E Andrews, George E. Andrews, Bruce C Berndt, Bruce C. Berndt
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.02.2011
 
EAN 9780387777658
ISBN 978-0-387-77765-8
No. of pages 420
Dimensions 166 mm x 244 mm x 27 mm
Weight 843 g
Illustrations XII, 420 p. 8 illus.
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.