Share
Fr. 69.00
Saso Dzeroski, Peter A. Flach
Inductive Logic Programming - 9th International Workshop, ILP-99, Bled, Slovenia, June 24-27, 1999, Proceedings
English · Paperback / Softback
Shipping usually within 1 to 2 weeks (title will be printed to order)
Description
Thisvolumecontains3invitedand24submittedpaperspresentedattheNinth InternationalWorkshoponInductiveLogicProgramming,ILP-99. The24acc- tedpaperswereselectedbytheprogramcommitteefromthe40paperssubmitted toILP-99. Eachpaperwasreviewedbythreereferees,applyinghighreviewing standards. ILP-99washeldinBled,Slovenia,24{27June1999. Itwascollocatedwith theSixteenthInternationalConferenceonMachineLearning,ICML-99,held27{ 30June1999. On27June,ILP-99andICML-99weregivenajointinvitedtalk byJ. RossQuinlanandajointpostersessionwhereallthepapersacceptedat ILP-99andICML-99werepresented. TheproceedingsofICML-99(editedby IvanBratkoandSa soD zeroski)arepublishedbyMorganKaufmann. WewishtothankalltheauthorswhosubmittedtheirpaperstoILP-99,the programcommitteemembersandotherreviewersfortheirhelpinselectinga high-qualityprogram,andtheinvitedspeakers:DaphneKoller,HeikkiMannila, andJ. RossQuinlan. ThanksareduetoTanjaUrban ci candherteamandMajda Zidanskiandherteamfortheorganizationalsupportprovided. Wewishtothank AlfredHofmannandAnnaKramerofSpringer-Verlagfortheircooperationin publishing these proceedings. Finally, we gratefully acknowledge the nancial supportprovidedbythesponsorsofILP-99. April1999 Sa soD zeroski PeterFlach ILP-99ProgramCommittee FrancescoBergadano(UniversityofTorino) HenrikBostr om(UniversityofStockholm) IvanBratko(UniversityofLjubljana) WilliamCohen(AT&TResearchLabs) JamesCussens(UniversityofYork) LucDeRaedt(UniversityofLeuven) Sa soD zeroski(Jo zefStefanInstitute,co-chair) PeterFlach(UniversityofBristol,co-chair) AlanFrisch(UniversityofYork) KoichiFurukawa(KeioUniversity) RoniKhardon(UniversityofEdinburgh) NadaLavra c(Jo zefStefanInstitute) JohnLloyd(AustralianNationalUniversity) StanMatwin(UniversityofOttawa) RaymondMooney(UniversityofTexas) StephenMuggleton(UniversityofYork) Shan-HweiNienhuys-Cheng(UniversityofRotterdam) DavidPage(UniversityofLouisville) BernhardPfahringer(AustrianResearchInstituteforAI) CelineRouveirol(UniversityofParis) ClaudeSammut(UniversityofNewSouthWales) MicheleSebag(EcolePolytechnique) AshwinSrinivasan(UniversityofOxford) PrasadTadepalli(OregonStateUniversity) StefanWrobel(GMDResearchCenterforInformationTechnology) OrganizationalSupport TheAlbatrossCongressTouristAgency,Bled Center for Knowledge Transfer in Information Technologies, Jo zef Stefan Institute,Ljubljana SponsorsofILP-99 ILPnet2,NetworkofExcellenceinInductiveLogicProgramming COMPULOGNet,EuropeanNetworkofExcellenceinComputationalLogic Jo zefStefanInstitute,Ljubljana LPASoftware,Inc. UniversityofBristol TableofContents I InvitedPapers ProbabilisticRelationalModels D. Koller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 InductiveDatabases(Abstract) H. Mannila. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SomeElementsofMachineLearning(ExtendedAbstract) J. R. Quinlan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 II ContributedPapers Re nementOperatorsCanBe(Weakly)Perfect L. Badea,M. Stanciu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CombiningDivide-and-ConquerandSeparate-and-ConquerforE cientand E ectiveRuleInduction H. Bostr om,L. Asker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Re ningCompleteHypothesesinILP I. Bratko. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 AcquiringGraphicDesignKnowledge withNonmonotonicInductiveLearning K. Chiba,H. Ohwada,F. Mizoguchi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 MorphosyntacticTaggingofSloveneUsingProgol J. Cussens,S. D zeroski,T. Erjavec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of contents
I Invited Papers.- Probabilistic Relational Models.- Inductive Databases.- Some Elements of Machine Learning.- II Contributed Papers.- Refinement Operators Can Be (Weakly) Perfect.- Combining Divide-and-Conquer and Separate-and-Conquer for Efficient and Effective Rule Induction.- Refining Complete Hypotheses in ILP.- Acquiring Graphic Design Knowledge with Nonmonotonic Inductive Learning.- Morphosyntactic Tagging of Slovene Using Progol.- Experiments in Predicting Biodegradability.- 1BC: A First-Order Bayesian Classifier.- Sorted Downward Refinement: Building Background Knowledge into a Refinement Operator for Inductive Logic Programming.- A Strong Complete Schema for Inductive Functional Logic Programming.- Application of Different Learning Methods to Hungarian Part-of-Speech Tagging.- Combining LAPIS and WordNet for the Learning of LR Parsers with Optimal Semantic Constraints.- Learning Word Segmentation Rules for Tag Prediction.- Approximate ILP Rules by Backpropagation Neural Network: A Result on Thai Character Recognition.- Rule Evaluation Measures: A Unifying View.- Improving Part of Speech Disambiguation Rules by Adding Linguistic Knowledge.- On Sufficient Conditions for Learnability of Logic Programs from Positive Data.- A Bounded Search Space of Clausal Theories.- Discovering New Knowledge from Graph Data Using Inductive Logic Programming.- Analogical Prediction.- Generalizing Refinement Operators to Learn Prenex Conjunctive Normal Forms.- Theory Recovery.- Instance based function learning.- Some Properties of Inverse Resolution in Normal Logic Programs.- An Assessment of ILP-assisted models for toxicology and the PTE-3 experiment.
Product details
Assisted by | Saso Dzeroski (Editor), Peter A. Flach (Editor) |
Publisher | Springer, Berlin |
Languages | English |
Product format | Paperback / Softback |
Released | 16.11.2001 |
EAN | 9783540661092 |
ISBN | 978-3-540-66109-2 |
No. of pages | 312 |
Weight | 426 g |
Illustrations | VIII, 312 p. |
Series |
Lecture Notes in Computer Science Lecture Notes in Artificial Intelligence Lecture Notes in Computer Science Lecture Notes in Artificial Intelligence |
Subject |
Natural sciences, medicine, IT, technology
> IT, data processing
> IT
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.