Read more
Einen verständlichen Zugang zum Thema bietet dieser Band und wendet sich an Praktiker ebenso wie an Studierende und Wissenschaftler. Er macht u. a. vertraut mit elektrochemischen Methoden und der Anwendung von Materialien, die zur Herstellung von porösem Silikon notwendig sind.
List of contents
Preface
FUNDAMENTALS OF POROUS SILICON PREPARATION
Introduction
Chemical Reactions Governing the Dissolution of Silicon
Experimental Set-up and Terminology for Electrochemical Etching of Porous Silicon
Electrochemical Reactions in the Silicon System
Density, Porosity, and Pore Size Definitions
Mechanisms of Electrochemical Dissolution and Pore Formation
Resume of the Properties of Crystalline Silicon
Choosing, Characterizing, and Preparing a Silicon Wafer
PREPARATION OF MICRO-, MESO-, AND MACRO-POROUS SILICON LAYERS
Etch Cell: Materials and Construction
Power Supply
Other Supplies
Safety Precautions and Handling of Waste
Preparing HF Electrolyte Solutions
Cleaning Wafers Prior to Etching
Preparation of Microporous Silicon from a p-Type Wafer
Preparation of Mesoporous Silicon from a p++-Type Wafer
Preparation of Macroporous, Luminescent Porous Silicon from an n-Type Wafer (Frontside Illumination)
Preparation of Macroporous, Luminescent Porous Silicon from an n-Type Wafer (Back Side Illumination)
Preparation of Porous Silicon by Stain Etching
Preparation of Silicon Nanowire Arrays by Metal-Assisted Etching
PREPARATION OF SPATIALLY MODULATED POROUS SILICON LAYERS
Time-Programmable Current Source
Pore Modulation in the z-Direction: Double Layer
Pore Modulation in the z-Direction: Rugate Filter
More Complicated Photonic Devices: Bragg Stacks, Microcavities, and Multi-Line Spectral Filters
Lateral Pore Gradients (in the x-y Plane)
Patterning in the x-y Plane Using Physical or Virtual Masks
Other Patterning Methods
FREESTANDING POROUS SILICON FILMS AND PARTICLES
Freestanding Films of Porous Silicon-"Lift-offs"
Micron-Scale Particles of Porous Silicon by Ultrasonication of Lift-off Films
Core-Shell (Si/SiO2) Nanoparticles of Luminescent Porous Silicon by Ultrasonication
CHARACTERIZATION OF POROUS SILICON
Gravimetric Determination of Porosity and Thickness
Electron Microscopy and Scanned Probe Imaging Methods
Optical Reflectance Measurements
Porosity, Pore Size, and Pore Size Distribution by Nitrogen Adsorption Analysis (BET, BJH, and BdB Methods)
Measurement of Steady-State Photoluminescence Spectra
Time-Resolved Photoluminescence Spectra
Infrared Spectroscopy of Porous Silicon
CHEMISTRY OF POROUS SILICON
Oxide-Forming Reactions of Porous Silicon
Biological Implications of the Aqueous Chemistry of Porous Silicon
Formation of Silicon-Carbon Bonds
Thermal Carbonization Reactions
Conjugation of Biomolecules to Modified Porous Silicon
Chemical Modification in Tandem with Etching
Metallization Reactions of Porous Silicon
APPENDIX A1. ETCH CELL ENGINEERING DIAGRAMS AND SCHEMATICS
Standard or Small Etch Cell-Complete
Standard Etch Cell Top Piece
Small Etch Cell Top Piece
Etch Cell Base (for Either Standard or Small Etch Cell)
Large Etch Cell-Complete
Large Etch Cell Top Piece
Large Etch Cell Base
APPENDIX A2. SAFETY PRECAUTIONS WHEN WORKING WITH HYDROFLUORIC ACID
Hydrofluoric Acid Hazards
First Aid Measures for HF Contact
Note to Physician
HF Antidote Gel
APPENDIX A3. GAS DOSING CELL ENGINEERING DIAGRAMS AND SCHEMATICS
Gas Dosing Cell Top Piece
Gas Dosing Cell Middle Piece
Gas Dosing Cell Bottom Piece
About the author
Michael J. Sailor received his B.S. in chemistry from Harvey Mudd College in 1983 and his Ph.D. in chemistry from Northwestern University in 1988. His thesis work involved the synthesis of organometallic metal clusters, in the laboratory of Professor Duward Shriver. He then performed postdoctoral research on semiconductor photoelectrochemistry under the direction of Professor Nathan S. Lewis at Stanford and Caltech. He began his faculty appointment in the Department of Chemistry and Biochemistry at the University of California at San Diego in 1990, becoming Associate Professor in 1994 and Full Professor in 1996.He received amongst other awards the Arnold and Mabel Beckman Young Investigator Award in 1993, the NSF Young Investigator Award 1993-1998, and the University of California Presidential Award for Excellence in Undergraduate Research in 1995. He was Popular Science Magazine "Best of What's New" General Technology award winner in 2002.
Summary
Einen verständlichen Zugang zum Thema bietet dieser Band und wendet sich an Praktiker ebenso wie an Studierende und Wissenschaftler. Er macht u. a. vertraut mit elektrochemischen Methoden und der Anwendung von Materialien, die zur Herstellung von porösem Silizium notwendig sind.
Report
"The appendices provide engineering drawings for electrochemical etch cells and a gas dosing cell. Appropriate for anyone working in the semiconductor industry, the tutorials are based on a series of summer lectures delivered to a research group." ( Book News , 1 April 2012)