Fr. 69.00

Approximation of Additive Convolution-Like Operators - Real C-Algebra Approach

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Various aspects of numerical analysis for equations arising in boundary integral equation methods have been the subject of several books published in the last 15 years [95, 102, 183, 196, 198]. Prominent examples include various classes of o- dimensional singular integral equations or equations related to single and double layer potentials. Usually, a mathematically rigorous foundation and error analysis for the approximate solution of such equations is by no means an easy task. One reason is the fact that boundary integral operators generally are neither integral operatorsof the formidentity plus compact operatornor identity plus an operator with a small norm. Consequently, existing standard theories for the numerical analysis of Fredholm integral equations of the second kind are not applicable. In the last 15 years it became clear that the Banach algebra technique is a powerful tool to analyze the stability problem for relevant approximation methods [102, 103, 183, 189]. The starting point for this approach is the observation that the ? stability problem is an invertibility problem in a certain BanachorC -algebra. As a rule, this algebra is very complicated - and one has to ?nd relevant subalgebras to use such tools as local principles and representation theory. However,invariousapplicationsthereoftenarisecontinuousoperatorsacting on complex Banach spaces that are not linear but only additive - i. e. , A(x+y)= Ax+Ay for all x,y from a given Banach space. It is easily seen that additive operators 1 are R-linear provided they are continuous.

List of contents

Complex and Real Algebras.- Approximation of Additive Integral Operators on Smooth Curves.- Approximation Methods for the Riemann-Hilbert Problem.- Piecewise Smooth and Open Contours.- Approximation Methods for the Muskhelishvili Equation.- Numerical Examples.

Summary

This book deals with numerical analysis for certain classes of additive operators and related equations, including singular integral operators with conjugation, the Riemann-Hilbert problem, Mellin operators with conjugation, double layer potential equation, and the Muskhelishvili equation. It is the first book to present systematic study of approximation methods for the Muskhelishvili equation, and the first book entirely devoted to numerical analysis for additive operators. The authors propose a unified approach to the analysis of the approximation methods under consideration based on special real extensions of complex C*-algebras. The list of the methods considered includes spline Galerkin, spline collocation, qualocation, and quadrature methods. The book is self-contained and accessible to graduate students.

Product details

Authors Victo Didenko, Victor Didenko, Bernd Silbermann
Publisher Birkhäuser
 
Languages English
Product format Paperback / Softback
Released 01.01.2008
 
EAN 9783764387501
ISBN 978-3-7643-8750-1
No. of pages 400
Weight 630 g
Series Frontiers in Mathematics
Frontiers in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.