Fr. 36.90

The Metrical Theory of Jacobi-Perron Algorithm

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more










Basic definitions.- Cylinders.- Increasing ?-fields.- Conditional expectations.- Ergodicity of the transformation.- Existence of an equivalent invariant measure.- The ergodic theorem.- Kuzmin's Theorem.- Convergence results.- The Borel-Cantelli lemma of Schmidt-Philipp.- Some extensions of Kuzmin's theorem.- Outer measures.- Hausdorff measures.- Hausdorff dimension.- Billingsley dimension.- Comparison theorems.- The main theorem of dimension theory of Jacobi algorithm.- Ergodic invariant measures.- Volume as approximation measure.- Proof of the conjecture for n=1 and n=2.- The metrical theory of Jacobi-Perron algorithm.- Errata.

List of contents

Basic definitions.- Cylinders.- Increasing ?-fields.- Conditional expectations.- Ergodicity of the transformation.- Existence of an equivalent invariant measure.- The ergodic theorem.- Kuzmin's Theorem.- Convergence results.- The Borel-Cantelli lemma of Schmidt-Philipp.- Some extensions of Kuzmin's theorem.- Outer measures.- Hausdorff measures.- Hausdorff dimension.- Billingsley dimension.- Comparison theorems.- The main theorem of dimension theory of Jacobi algorithm.- Ergodic invariant measures.- Volume as approximation measure.- Proof of the conjecture for n=1 and n=2.- The metrical theory of Jacobi-Perron algorithm.- Errata.

Product details

Authors F. Schweiger
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.07.2009
 
EAN 9783540063889
ISBN 978-3-540-06388-9
No. of pages 116
Dimensions 154 mm x 241 mm x 9 mm
Weight 214 g
Illustrations VIII, 116 p.
Series Lecture Notes in Mathematics
Lecture Notes in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.