Fr. 193.00

Probabilistic Logic Networks - A Comprehensive Framework for Uncertain Inference

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Abstract In this chapter we provide an overview of probabilistic logic networks (PLN), including our motivations for developing PLN and the guiding principles underlying PLN. We discuss foundational choices we made, introduce PLN knowledge representation, and briefly introduce inference rules and truth-values. We also place PLN in context with other approaches to uncertain inference. 1.1 Motivations This book presents Probabilistic Logic Networks (PLN), a systematic and pragmatic framework for computationally carrying out uncertain reasoning - r- soning about uncertain data, and/or reasoning involving uncertain conclusions. We begin with a few comments about why we believe this is such an interesting and important domain of investigation. First of all, we hold to a philosophical perspective in which "reasoning" - properly understood - plays a central role in cognitive activity. We realize that other perspectives exist; in particular, logical reasoning is sometimes construed as a special kind of cognition that humans carry out only occasionally, as a deviation from their usual (intuitive, emotional, pragmatic, sensorimotor, etc.) modes of thought. However, we consider this alternative view to be valid only according to a very limited definition of "logic." Construed properly, we suggest, logical reasoning may be understood as the basic framework underlying all forms of cognition, including those conventionally thought of as illogical and irrational.

List of contents

Knowledge Representation.- Experiential Semantics.- Indefinite Truth Values.- First-Order Extensional Inference: Rules and Strength Formulas.- First-Order Extensional Inference with Indefinite Truth Values.- First-Order Extensional Inference with Distributional Truth Values.- Error Magnification in Inference Formulas.- Large-Scale Inference Strategies.- Higher-Order Extensional Inference.- Handling Crisp and Fuzzy Quantifiers with Indefinite Truth Values.- Intensional Inference.- Aspects of Inference Control.- Temporal and Causal Inference.

Summary

Abstract In this chapter we provide an overview of probabilistic logic networks (PLN), including our motivations for developing PLN and the guiding principles underlying PLN. We discuss foundational choices we made, introduce PLN knowledge representation, and briefly introduce inference rules and truth-values. We also place PLN in context with other approaches to uncertain inference. 1.1 Motivations This book presents Probabilistic Logic Networks (PLN), a systematic and pragmatic framework for computationally carrying out uncertain reasoning – r- soning about uncertain data, and/or reasoning involving uncertain conclusions. We begin with a few comments about why we believe this is such an interesting and important domain of investigation. First of all, we hold to a philosophical perspective in which “reasoning” – properly understood – plays a central role in cognitive activity. We realize that other perspectives exist; in particular, logical reasoning is sometimes construed as a special kind of cognition that humans carry out only occasionally, as a deviation from their usual (intuitive, emotional, pragmatic, sensorimotor, etc.) modes of thought. However, we consider this alternative view to be valid only according to a very limited definition of “logic.” Construed properly, we suggest, logical reasoning may be understood as the basic framework underlying all forms of cognition, including those conventionally thought of as illogical and irrational.

Product details

Authors Be Goertzel, Ben Goertzel, Izabela Frei Goertzel, Izabela Freire Goertzel, Ari Heljakka, Matthew Ikle, Matthe Iklé, Matthew Iklé
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 14.04.2009
 
EAN 9780387768717
ISBN 978-0-387-76871-7
No. of pages 336
Dimensions 161 mm x 21 mm x 243 mm
Weight 674 g
Illustrations VIII, 336 p.
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

B, Artificial Intelligence, computer science, Mathematical Applications in Computer Science, Mathematical & statistical software, Computer science—Mathematics, Maths for computer scientists, Math Applications in Computer Science

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.