Fr. 77.00

Zeta Functions of Groups and Rings

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Thestudyofthesubgroupgrowthofin?nitegroupsisanareaofmathematical research that has grown rapidly since its inception at the Groups St. Andrews conferencein1985.Ithasbecomearichtheoryrequiringtoolsfromandhaving applications to many areas of group theory. Indeed, much of this progress is chronicled by Lubotzky and Segal within their book [42]. However, one area within this study has grown explosively in the last few years. This is the study of the zeta functions of groups with polynomial s- groupgrowth,inparticularfortorsion-free?nitely-generatednilpotentgroups. These zeta functions were introduced in [32], and other key papers in the - velopment of this subject include [10, 17], with [19, 23, 15] as well as [42] presenting surveys of the area. The purpose of this book is to bring into print signi?cant and as yet unpublished work from three areas of the theory of zeta functions of groups. First, there are now numerous calculations of zeta functions of groups by doctoralstudentsofthe?rstauthorwhichareyettobemadeintoprintedform outside their theses. These explicit calculations provide evidence in favour of conjectures, or indeed can form inspiration and evidence for new conjectures. We record these zeta functions in Chap.2. In particular, we document the functional equations frequently satis?ed by the local factors. Explaining this phenomenon is, according to the ?rst author and Segal [23], "one of the most intriguing open problems in the area".

List of contents

Nilpotent Groups: Explicit Examples.- Soluble Lie Rings.- Local Functional Equations.- Natural Boundaries I: Theory.- Natural Boundaries II: Algebraic Groups.- Natural Boundaries III: Nilpotent Groups.

About the author

Marcus du Sautoy ist Professor für Mathematik an der Universität von Oxford und Research Fellow der Royal Society. Seine in der Times erscheinenden und von der BBC ausgestrahlten Beiträge über mathematische Fragen erfreuen sich großer Beliebtheit.

Summary

Thestudyofthesubgroupgrowthofin?nitegroupsisanareaofmathematical research that has grown rapidly since its inception at the Groups St. Andrews conferencein1985.Ithasbecomearichtheoryrequiringtoolsfromandhaving applications to many areas of group theory. Indeed, much of this progress is chronicled by Lubotzky and Segal within their book [42]. However, one area within this study has grown explosively in the last few years. This is the study of the zeta functions of groups with polynomial s- groupgrowth,inparticularfortorsion-free?nitely-generatednilpotentgroups. These zeta functions were introduced in [32], and other key papers in the - velopment of this subject include [10, 17], with [19, 23, 15] as well as [42] presenting surveys of the area. The purpose of this book is to bring into print signi?cant and as yet unpublished work from three areas of the theory of zeta functions of groups. First, there are now numerous calculations of zeta functions of groups by doctoralstudentsofthe?rstauthorwhichareyettobemadeintoprintedform outside their theses. These explicit calculations provide evidence in favour of conjectures, or indeed can form inspiration and evidence for new conjectures. We record these zeta functions in Chap.2. In particular, we document the functional equations frequently satis?ed by the local factors. Explaining this phenomenon is, according to the ?rst author and Segal [23], “one of the most intriguing open problems in the area”.

Additional text

From the reviews:"The book starts with a short lovely description of several classical zeta function … . It also contains a large number of examples of groups for which these zeta functions were explicitly computed. … it certainly will be a basic text for anyone who plans to work in this area. … These surely will be valuable for inspiring further developments." (Alexander Lubotzky, Mathematical Reviews, Issue 2009 d)"The purpose of this stimulating book is to bring into print significant and as yet unpublished work from different areas of the theory of zeta functions of groups. … The book will be not only a valuable reference for people working in this area, but also a fascinating reading for everybody who wants to understand the role zeta functions have in group theory and the connections between subgroup growth and algebraic geometry over finite fields revealed by this theory." (Andrea Lucchini, Zentralblatt MATH, Vol. 1151, 2009)“The authors have compiled a large body of facts and conjectures which will no doubt be most valuable for everyone working in this fascinating and very active field of research.” (C. Baxa, Monatshefte für Mathematik, Vol. 160 (3), June, 2010)

Report

From the reviews:

"The book starts with a short lovely description of several classical zeta function ... . It also contains a large number of examples of groups for which these zeta functions were explicitly computed. ... it certainly will be a basic text for anyone who plans to work in this area. ... These surely will be valuable for inspiring further developments." (Alexander Lubotzky, Mathematical Reviews, Issue 2009 d)
"The purpose of this stimulating book is to bring into print significant and as yet unpublished work from different areas of the theory of zeta functions of groups. ... The book will be not only a valuable reference for people working in this area, but also a fascinating reading for everybody who wants to understand the role zeta functions have in group theory and the connections between subgroup growth and algebraic geometry over finite fields revealed by this theory." (Andrea Lucchini, Zentralblatt MATH, Vol. 1151, 2009)
"The authors have compiled a large body of facts and conjectures which will no doubt be most valuable for everyone working in this fascinating and very active field of research." (C. Baxa, Monatshefte für Mathematik, Vol. 160 (3), June, 2010)

Product details

Authors Marcu du Sautoy, Marcus Du Sautoy, Marcus Du Sautoy, Luke Woodward
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 14.04.2009
 
EAN 9783540747017
ISBN 978-3-540-74701-7
No. of pages 212
Dimensions 158 mm x 236 mm x 13 mm
Weight 356 g
Illustrations XII, 212 p.
Series Lecture Notes in Mathematics
Lecture Notes in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Algebra, B, Group Theory, Mathematics and Statistics, Number Theory, Rings (Algebra), Non-associative Rings and Algebras, Nonassociative rings, Group Theory and Generalizations, Lattice;Zeta function;algebra;group;ring

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.