Read more
Informationen zum Autor Dr Darren R Flower, Reader in Pharmacy, School of Life and Health Sciences, University of Aston, Birmingham, UK. Klappentext Vaccines have probably saved more lives and reduced suffering in a greater number of people than any other medical intervention in human history, succeeding in eradicating smallpox and significantly reducing the mortality and incidence of other diseases. However, with the emergence of diseases such as SARS and the threat of biological warfare, vaccination has once again become a topic of major interest in public health.Vaccinology now has at its disposal an array of post-genomic approaches of great power. None has a more persuasive potential impact than the application of computational informatics to vaccine discovery; the recent expansion in genome data and the parallel increase in cheap computing power have placed the bioinformatics exploration of pathogen genomes centre stage for vaccine researchers.This is the first book to address the area of bioinformatics as applied to rational vaccine design, discussing the ways in which bioinformatics can contribute to improved vaccine development by* introducing the subject of harnessing the mathematical and computing power inherent in bioinformatics to the study of vaccinology* putting it into a historical and societal context, and* exploring the scope of its methods and applications.Bioinformatics for Vaccinology is a one-stop introduction to computational vaccinology. It will be of particular interest to bioinformaticians with an interest in immunology, as well as to immunologists, and other biologists who need to understand how advances in theoretical and computational immunobiology can transform their working practices. Zusammenfassung The recent expansion in genome data and the parallel increase in cheap computing power has placed the bioinformatics exploration of pathogen genomes centre stage for vaccine researchers. The book shows how bioinformatic techniques can solve key problems from vaccinology and immunology. Inhaltsverzeichnis Preface xiii Acknowledgements xv Exordium xvii 1 Vaccines: Their place in history 1 Smallpox in history 1 Variolation 3 Variolation in history 5 Variolation comes to Britain 6 Lady Mary Wortley Montagu 9 Variolation and the Sublime Porte 11 The royal experiment 13 The boston connection 14 Variolation takes hold 17 The Suttonian method 18 Variolation in Europe 19 The coming of vaccination 21 Edward Jenner 23 Cowpox 26 Vaccination vindicated 28 Louis Pasteur 29 Vaccination becomes a science 30 Meister, Pasteur and rabies 31 A vaccine for every disease 33 In the time of cholera 34 Haffkine and cholera 36 Bubonic plague 37 The changing face of disease 39 Almroth wright and typhoid 40 Tuberculosis, Koch, and Calmette 43 Vaccine BCG 44 Poliomyelitis 46 Salk and Sabin 47 Diphtheria 49 Whooping cough 50 Many diseases, many vaccines 51 Smallpox: Endgame 53 Further reading 54 2 Vaccines: Need and opportunity 55 Eradication and reservoirs 55 The ongoing burden of disease 57 Lifespans 57 The evolving nature of disease 59 Economics, climate and disease 60 Three threats 60 Tuberculosis in the 21st century 61 HIV and AIDS 62 Malaria: Then and now 63 Influenza 64 Bioterrorism 65 Vaccines as medicines 67 Vaccines and the pharmaceutical industry 68 Making vaccines 70 The coming of the vaccine industry 70 3 Vaccines: How they work 73 Challenging the immune system 73 The threat from bacteria: Robust, diverse, and endemic 74 Microbes, diversity and metagenomics 7...