Fr. 356.00

Localized to Itinerant Electronic Transition in Perovskite Oxides

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Interest in the transition metal oxides with perovskite related structures goes back to the 1950s when the sodium tungsten bronzes NaxWO3 were shown to be metallic [1 ], the system Lal_xSr~MnO3 was found to contain a ferromagnetic conductive phase [2], and La0.sSr0.sCoO3 was reported to be a ferromagnetic metal, but with a peculiar magnetization of 1.5 #a/Co atom [3]. Stoichiometric oxide perovskites have the generic formula AMO3 in which the A site is at the center of a simple cubic array of M sites; the oxide ions form (180 ° 4)) M O M bridges to give an MO3 array of corner shared MO6/2 octahedra and the larger A cations have twelvefold oxygen coordination. Mismatch between the A O and M O equilibrium bond lengths introduces internal stresses. A compressive stress on the MO3 array is accommodated by a lowering of the M O M bond angle from 180 ° to (180 ° 4)); a tensile stress on the M O M bonds is accommodated by the formation of hexagonal polytypes [4].

List of contents

J.B. Goodenough: General Considerations.- J.B. Goodenough, J.-S. Zhou: Transport Properties.- T. Egami: Local Atomic Structure of CMR Manganites and Related Oxides.- S.L. Cooper: Optical Spectroscopic Studies of Metal-Insulator Transitions in Perovskite-Related Oxides.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.