Fr. 179.00

Variational Theory of Splines

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Th e vari a t i on al s p li ne t heo ry w h ic h orig i na t es from th e w ell-kn own p ap er b y J. e . Hollid a y ( 1957) i s t od a y a we ll- deve lo pe d fi eld in a p pr o x - mat i o n t he o ry . T he ge ne ra l d efinition of s p l i nes in t he Hilb er t s pace , - i st ence , uniquen e s s , and ch ar a c t eriz a tion t he o re ms w ere obt ain ed a b o ut 35 ye a r s ago b y M . A t t ei a , P . J . Laur en t , a n d P . M. An selon e , bu t in r e cent y e a r s important n e w r esult s h a v e b e en ob t ain ed in th e a bst ract va r i a t i o n a l s p l i ne theor y .

List of contents

1. Splines in Hilbert Spaces.- 2. Reproducing Mappings and Characterization of Splines.- 3. General Convergence Techniques and Error Estimates for Interpolating Splines.- 4. Splines in Subspaces.- 5. Interpolating DM-Splines.- 6. Splines on Manifolds.- 7. Vector Splines.- 8. Tensor and Blending Splines.- 9. Optimal Approximation of Linear Operators.- 10. Classification of Spline Objects.- 11. ??-Approximations and Data Compression.- 12. Algorithms for Optimal Smoothing Parameter.- Appendices.- Theorems from Functional Analysis Used in This Book.- A.1 Convergence in Hilbert Space.- A.2 Theorems on Linear Operators.- A.3 Sobolev Spaces in Domain.- On Software Investigations in Splines.- B.1 One-Dimensional Case.- B.2 Multi-Dimensional Case.

Summary

Offers a systematic description of the variational theory of splines in Hilbert spaces. This book discusses central aspects in the general form: existence, uniqueness, characterization, convergence, error estimations, vector and tensor hybrids in splines, and dimensional reducing (traces of splines onto manifolds).

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.