Fr. 237.00

Genetic Improvement of Bioenergy Crops

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Ethanol as an alternative fuel is receiving a lot of attention because it addresses concerns related to dwindling oil supplies, energy independence, and climate change. The majority of the ethanol in the US is produced from corn starch. With the US Department of Energy's target that 30% of the fuel in the US is produced from renewable resources by 2030, the anticipated demand for corn starch will quickly exceed the current production of corn. This, plus the concern that less grain will become available for food and feed purposes, necessitates the use of other feedstocks for the production of ethanol. For the very same reasons, there is increasing research activity and growing interest in many other biomass crops.

Genetic Improvement of Bio-Energy Crops focuses on the production of ethanol from lignocellulosic biomass, which includes corn stover, biomass from dedicated annual and perennial energy crops, and trees as well as a number of important biomass crops. The biomass is typically pretreated through thermochemical processing to make it more amenable to hydrolysis with cellulolytic enzymes. The enzymatic hydrolysis yields monomeric sugars that can be fermented to ethanol by micro-organisms. While much emphasis has been placed on the optimization of thermo-chemical pretreatment processes, production of more efficient hydrolytic enzymes, and the development of robust microbial strains, relatively little effort has been dedicated to the improvement of the biomass itself.

List of contents

I.- Why Bioenergy Makes Sense.- A Primer on Genetics, Genomics and Plant Breeding.- Production of Ethanol from Grain.- Composition and Biosynthesis of Lignocellulosic Biomass.- Selection of Promising Biomass Feedstock Lines Using High-Throughput Spectrometric and Enzymatic Assays.- Current Technologies for Fuel Ethanol Production from Lignocellulosic Plant Biomass.- II.- Genetic Improvement of Corn for Lignocellulosic.- Development and Utilization of Sorghum as a Bioenergy Crop.- Genetic Improvement of Sugarcane (Saccharum spp.) as an Energy Crop.- Miscanthus: Genetic Resources and Breeding Potential to Enhance Bioenergy Production.- Improvement of Switchgrass as a Bioenergy Crop.- Improvement of Perennial Forage Species as Feedstock for Bioenergy.- Genetic Improvement of Willow (Salix spp.) as a Dedicated Bioenergy Crop.- Genetic Improvement of Poplar (Populus spp.) as a Bioenergy Crop.- Southern Pines: A Resource for Bioenergy.

Summary

Ethanol as an alternative fuel is receiving a lot of attention because it addresses concerns related to dwindling oil supplies, energy independence, and climate change. The majority of the ethanol in the US is produced from corn starch. With the US Department of Energy’s target that 30% of the fuel in the US is produced from renewable resources by 2030, the anticipated demand for corn starch will quickly exceed the current production of corn. This, plus the concern that less grain will become available for food and feed purposes, necessitates the use of other feedstocks for the production of ethanol. For the very same reasons, there is increasing research activity and growing interest in many other biomass crops.

Genetic Improvement of Bio-Energy Crops focuses on the production of ethanol from lignocellulosic biomass, which includes corn stover, biomass from dedicated annual and perennial energy crops, and trees as well as a number of important biomass crops. The biomass is typically pretreated through thermochemical processing to make it more amenable to hydrolysis with cellulolytic enzymes. The enzymatic hydrolysis yields monomeric sugars that can be fermented to ethanol by micro-organisms. While much emphasis has been placed on the optimization of thermo-chemical pretreatment processes, production of more efficient hydrolytic enzymes, and the development of robust microbial strains, relatively little effort has been dedicated to the improvement of the biomass itself.

Product details

Assisted by Wilfre Vermerris (Editor), Wilfred Vermerris (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 16.09.2008
 
EAN 9780387708041
ISBN 978-0-387-70804-1
No. of pages 450
Dimensions 155 mm x 29 mm x 235 mm
Weight 892 g
Illustrations XXII, 450 p. 35 illus., 7 illus. in color.
Subjects Natural sciences, medicine, IT, technology > Biology > Botany

B, Botany, biochemistry, Agriculture, Biomedical and Life Sciences, Botany & plant sciences, Plant Biochemistry, Plant Science, Plant Sciences, Genetics (non-medical), Plant Genetics, Plant Genetics and Genomics, Botany and plant sciences

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.