Fr. 211.20

Abelian Varieties: Theta Functions and the Fourier Transform

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more










The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform. The author starts by discussing the classical theory of theta functions from the point of view of the representation theory of the Heisenberg group (in which the usual Fourier transform plays the prominent role). He then shows that in the algebraic approach to this theory, the Fourier-Mukai transform can often be used to simplify the existing proofs or to provide completely new proofs of many important theorems. Graduate students and researchers with strong interest in algebraic geometry will find much of interest in this volume.

List of contents










Part I. Analytic Theory: 1. Line bundles on complex tori; 2. Representations of Heisenberg groups I ; 3. Theta functions; 4. Representations of Heisenberg groups II: intertwining operators; 5. Theta functions II: functional equation; 6. Mirror symmetry for tori; 7. Cohomology of a line bundle on a complex torus: mirror symmetry approach; Part II. Algebraic Theory: 8. Abelian varieties and theorem of the cube; 9. Dual Abelian variety; 10. Extensions, biextensions and duality; 11. Fourier-Mukai transform; 12. Mumford group and Riemann's quartic theta relation; 13. More on line bundles; 14. Vector bundles on elliptic curves; 15. Equivalences between derived categories of coherent sheaves on Abelian varieties; Part III. Jacobians: 16. Construction of the Jacobian; 17. Determinant bundles and the principle polarization of the Jacobian; 18. Fay's trisecant identity; 19. More on symmetric powers of a curve; 20. Varieties of special divisors; 21. Torelli theorem; 22. Deligne's symbol, determinant bundles and strange duality; Bibliographical notes and further reading; References.

About the author

fm.author_biographical_note1

Summary

The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier–Mukai transform.

Product details

Authors Polishchuk Alexander, Alexander Polishchuk
Assisted by Bela Bollobas (Editor)
Publisher Cambridge University Press Academic
 
Languages English
Product format Hardback
Released 21.08.2003
 
EAN 9780521808040
ISBN 978-0-521-80804-0
Dimensions 160 mm x 234 mm x 25 mm
Series Cambridge Tracts in Mathematic
Subject Natural sciences, medicine, IT, technology > Mathematics > Geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.