Read more
For physicists, mechanics is quite obviously geometric, yet the classical approach typically emphasizes abstract, mathematical formalism. Setting out to make mechanics both accessible and interesting for non-mathematicians, Richard Talman uses geometric methods to reveal qualitative aspects of the theory. He introduces concepts from differential geometry, differential forms, and tensor analysis, then applies them to areas of classical mechanics as well as other areas of physics, including optics, crystal diffraction, electromagnetism, relativity, and quantum mechanics. For easy reference, the author treats Lagrangian, Hamiltonian, and Newtonian mechanics separately -- exploring their geometric structure through vector fields, symplectic geometry, and gauge invariance respectively. Practical perturbative methods of approximation are also developed. This second, fully revised edition has been expanded to include new chapters on electromagnetic theory, general relativity, and string theory. Geometric Mechanics features illustrative examples and assumes only basic knowledge of Lagrangian mechanics.
List of contents
1 Review of Classical Mechanics and String Field Theory2 Geometry of Mechanics, I, Linear3 Geometry of Mechanics, II, Curvilinear4 Geometry of Mechanics, III, Multilinear5 Lagrange-Poincaré Description of Mechanics6 Newtonian/Gauge Invariant Mechanics7 Hamiltonian Treatment of Geometric Optics8 Hamilton-Jacobi Theory9 Relativistic Mechanics10 Conservation Laws and Symmetry11 Electromagnetic Theory12 Relativistic Strings13 General Relativity14 Analytic Bases for Approximation15 Linear Hamiltonian Systems16 Perturbation Theory17 Symplectic Mechanics
About the author
Richard M. Talman is Professor of Physics at Cornell University, Ithaca, New York. After receiving B.A and M.A. at the University of Western Ontario, he received his Ph.D. at the California Institute of Technology in 1963. Since then he has been at Cornell, accepting a full professorship for Physics in 1971.He has spent terms as visiting scientist at Stanford(2), CERN(2), Berkeley(2) and Saskatchewan, and served as leader of the Instrumentation and Diagnostics Group at the SSC project in Dallas.
Summary
Klassische Lehrbücher betrachten die Mechanik in der Regel vom mathematisch-abstrakten Standpunkt aus - dabei ist das Ganze für Physiker ein zweifelsfrei geometrisches Problem! Auch für mathematisch weniger Interessierte verständlich und spannend wird die Mechanik (und einiges darüber hinaus) vom Autor dieses Bandes mit geometrischen Methoden aufbereitet, wobei die Betonung auf dem Verständnis qualitativer Zusammenhänge liegt. Begriffe der Differenzialgeometrie und Tensoranalysis werden entwickelt und auf die klassische Mechanik ebenso wie auf Fragen der Optik, der Beugung am Kristall, des elektromagnetischen Feldes sowie der Quantenmechanik und Relativitätstheorie angewendet. Der Übersichtlichkeit halber werden Newton'scher, Hamilton'scher und Lagrange-Formalismus getrennt behandelt; die geometrische Struktur wird jeweils durch Vektorfelder, symplektische Geometrie und Invarianz unter Eichtransformationen beschrieben. Diese zweite, überarbeitete Auflage wurde um neue Kapitel zum Elektromagnetismus, zur Allgemeinen Relativitätstheorie und zur String-Theorie erweitert.