Sold out

Number Theory III - Diophantine Geometry

English · Hardback

Description

Read more

List of contents

I Some Qualitative Diophantine Statements.- §1. Basic Geometric Notions.- §2. The Canonical Class and the Genus.- §3. The Special Set.- §4. Abelian Varieties.- §5. Algebraic Equivalence and the Néron-Severi Group.- §6. Subvarieties of Abelian and Semiabelian Varieties.- §7. Hilbert Irreducibility.- II Heights and Rational Points.- §1. The Height for Rational Numbers and Rational Functions.- §2. The Height in Finite Extensions.- §3. The Height on Varieties and Divisor Classes.- §4. Bound for the Height of Algebraic Points.- III Abelian Varieties.- §0. Basic Facts About Algebraic Families and Néron Models.- §1, The Height as a Quadratic Function.- §2. Algebraic Families of Heights.- §3. Torsion Points and the l-Adic Representations.- §4. Principal Homogeneous Spaces and Infinite Descents.- §5. The Birch-Swinnerton-Dyer Conjecture.- §6. The Case of Elliptic Curves Over Q.- IV Faltings' Finiteness Theorems on Abelian Varieties and Curves.- §1. Torelli's Theorem.- §2. The Shafarevich Conjecture.- §3. The l-Adic Representations and Semisimplicity.- §4. The Finiteness of Certain l-Adic Representations. Finiteness I Implies Finiteness II.- §5. The Faltings Height and Isogenies: Finiteness I.- §6. The Masser-Wustholz Approach to Finiteness I.- V Modular Curves Over Q.- §1. Basic Definitions.- §2. Mazur's Theorems.- §3. Modular Elliptic Curves and Fermat's Last Theorem.- §4. Application to Pythagorean Triples.- §5. Modular Elliptic Curves of Rank 1.- VI The Geometric Case of Mordell's Conjecture.- §0. Basic Geometric Facts.- §1. The Function Field Case and Its Canonical Sheaf.- §2. Grauert's Construction and Vojta's Inequality.- §3. Parshin's Method with (?;2x/y).- §4. Manin's Method with Connections.- §5. Characteristic p and Voloch's Theorem.- VII Arakelov Theory.- §1. Admissible Metrics Over C.- §2. Arakelov Intersections.- §3. Higher Dimensional Arakelov Theory.- VIII Diophantine Problems and Complex Geometry.- §1. Definitions of Hyperbolicity.- §2. Chern Form and Curvature.- §3. Parshin's Hyperbolic Method.- §4. Hyperbolic Imbeddings and Noguchi's Theorems.- §5. Nevanlinna Theory.- IX Weil Functions. Integral Points and Diophantine Approximations.- §1. Weil Functions and Heights.- §2. The Theorems of Roth and Schmidt.- §3. Integral Points.- §4. Vojta's Conjectures.- §5. Connection with Hyperbolicity.- §6. From Thue-Siegel to Vojta and Faltings.- §7. Diophantine Approximation on Toruses.- X Existence of (Many) Rational Points.- §1. Forms in Many Variables.- §2. The Brauer Group of a Variety and Manin's Obstruction.- §3. Local Specialization Principle.- §4. Anti-Canonical Varieties and Rational Points.

Product details

Authors Serge Lang
Publisher Springer-Verlag GmbH
 
Languages English
Product format Hardback
Released 01.01.1991
 
No. of pages 298
Dimensions 160 mm x 242 mm x 19 mm
Weight 593 g
Illustrations 1 Abb.
Series Encyclopaedia of Mathematical Sciences
Encyclopaedia of Mathematical Sciences
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.