Fr. 259.20

Semimodular Lattices - Theory and Applications

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

Lattice theory evolved as part of algebra in the nineteenth century through the work of Boole, Peirce and Schrö der, and in the first half of the twentieth century through the work of Dedekind, Birkhoff, Ore, von Neumann, Mac Lane, Wilcox, Dilworth, and others. In Semimodular Lattices, Manfred Stern uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. He focuses on the important theory of semimodularity, its many ramifications, and its applications in discrete mathematics, combinatorics, and algebra. The author surveys and analyzes Birkhoffs concept of semimodularity and the various related concepts in lattice theory, and he presents theoretical results as well as applications in discrete mathematics group theory and universal algebra. Special emphasis is given to the combinatorial aspects of finite semimodular lattices and to the connections between matroids and geometric lattices, antimatroids and locally distributive lattices. The book also deals with lattices that are "close" to semimodularity or can be combined with semimodularity, for example supersolvable, admissible, consistent, strong, and balanced lattices. Researchers in lattice theory, discrete mathematics, combinatorics, and algebra will find this book valuable.

List of contents










Preface; 1. From Boolean algebras to semimodular lattices; 2. M-symmetric lattices; 3. Conditions related to semimodularity, 0-conditions and disjointness properties; 4. Supersolvable and admissible lattices, consistent and strong lattices; 5. The covering graph; 6. Semimodular lattices of finite length; 7. Local distributivity; 8. Local modularity; 9. Congruence semimodularity; Master reference list; Table of notation; Index.

Summary

Semimodular Lattices: Theory and Applications uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. It surveys and analyzes Garrett Birkhoff's concept of semimodularity, and he presents theoretical results as well as applications in discrete mathematics, group theory and universal algebra.

Product details

Authors Manfred Stern
Assisted by B. Doran (Editor), G. -C Rota (Editor)
Publisher Cambridge University Press
 
Languages English
Product format Hardback
Released 25.10.2007
 
EAN 9780521461054
ISBN 978-0-521-46105-4
No. of pages 388
Dimensions 161 mm x 240 mm x 25 mm
Weight 746 g
Series Encyclopedia of Mathematics an
Subject Natural sciences, medicine, IT, technology > Mathematics > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.